- •М. Ю. Андрианова Физико-химические основы природных и антропогенных процессов в техносфере Сокращенная версия
- •1. Оболочки Земли
- •1.1. Земная кора
- •1.2. Мантия Земли
- •1.3. Ядро Земли
- •1.4. Магнитное поле и магнитосфера Земли
- •1.5. Атмосфера
- •1.6. Гидросфера
- •1.7. Биосфера и педосфера
- •3. Миграция элементов
- •4. Атмосфера. Солнечная радиация и вертикальная структура
- •4.1. Изменение давления с высотой
- •4.2. Изменение температуры с высотой
- •4.3. Радиационный баланс Земли
- •4.4. Особенности циркуляции атмосферы
- •5. Биогеохимические циклы элементов
- •5.1. Цикл кислорода
- •5.1.1. Геохимический субцикл цикла кислорода
- •5.1.2. Биотический и физико-химический субциклы цикла кислорода
- •5.1.3. Озон в стратосфере
- •5.1.4. Озон в тропосфере
- •5.1.5. Фотохимический смог
- •5.2. Гидрологический цикл и цикл водорода
- •5.2.1. Гидрологический цикл
- •5.2.2. Цикл водорода
- •5.2.3. Увеличение кислотности океанской воды
- •5.3. Цикл азота
- •5.3.1. Природная фиксация азота
- •5.3.2. Промышленная фиксация азота
- •5.3.3. Аммонификация
- •5.3.4. Нитрификация и другие процессы
- •5.3.5. Денитрификация и другие процессы
- •5.3.6. Оксиды азота
- •5.3.7. Физический перенос азота
- •5.4. Цикл серы
- •5.4.1. Поступление серы в атмосферу
- •5.4.2. Серная кислота и сульфатные аэрозоли
- •5.4.3. Атмосферный аэрозоль
- •5.4.4. Смог лондонского типа
- •5.4.5. Кислотные дожди
- •5.4.6. Ассимиляция сульфата
- •5.4.7. Восстановление сульфата и другие процессы
- •5.4.8. Окисление сероводорода и другие процессы
- •5.4.9. Окислительный бактериальный фильтр
- •5.5. Циклы фосфора и кремния
- •5.5.1. Цикл кремния
- •5.5.2. Цикл фосфора
- •5.6. Циклы тяжелых металлов
- •5.6.1. Природные источники тяжелых металлов
- •5.6.2. Техногенные источники тяжелых металлов
- •5.6.3. Трансформация антропогенных выбросов тяжелых металлов в почве
- •5.6.4. Токсичность металлов в гидросфере
- •5.7. Цикл углерода
- •5.7.1. Основные процессы цикла углерода
- •5.7.2. Глобальное потепление климата и парниковые газы
- •5.7.4. Токсичные соединения углерода
- •5.8. Циклы натрия и хлора
- •5.8.1. Цикл натрия
- •5.8.2. Засоление почв
- •5.8.3. Цикл хлора
- •5.8.4. Галогенорганические соединения
- •5.8.5. Стойкие органические загрязнители и другие приоритетные поллютанты
5.3.5. Денитрификация и другие процессы
Если бы биосфера не испытывала влияния человека, то процессы денитрификации полностью уравновешивали бы азотфиксацию и нитрификацию, замыкая таким образом цикл азота.
Денитрификация протекает в несколько стадий:
NO3− → NО2 − → NО → N2О → N2.
Денитрификаторами являются аэробные бактерии и грибы, однако процесс осуществляется в анаэробных условиях, т.к молекулярный кислород подавляет необходимые для процесса ферменты. Поэтому потери почвенного азота в виде газов, поступающих в атмосферу, возрастают при застойном переувлажнении почвы, когда происходит закупорка ее пор водой. По той же причине в нитратсодержащих сточных водах или на удобренных нитратами рисовых полях при отсутствии доступа кислорода может происходить накопление нитритов.
Только некоторые организмы (например, грибы) могут осуществлять всю последовательность реакций денитрификации; многие бактерии имеют не все необходимые для этого ферменты и проводят только некоторые из реакций (что не мешает бактериям во многих случаях формировать сообщества, осуществляющие все стадии процесса). Например, в анаэробных условиях Esherichia coli или Enterobacter осуществляют нитратное дыхание – превращение нитрата в нитрит (образование N2 не происходит). Впоследствии нитрат может восстанавливаться до иона аммония с выделением последнего в среду (аммонификация нитрата).
В анаэробных условиях возможно протекание реакции анаэробного окисления азота (с образованием примесей в виде нитратов). Этот процесс (как и процессы нитрификации и денитрификации) используют в очистке сточных вод:
NH4+ + NO2− → N2 + 2H2O.
В океане до 50% азота образуется по этому механизму.
Денитрификации принадлежит решающая роль в сохранении жизни на суше – если бы эти процессы не происходили, атмосферный азот полностью превратился бы в нитраты, накапливавшиеся в океанской воде, так что организмы суши лишились бы источника азота.
5.3.6. Оксиды азота
Оксиды азота играют важную роль в фотохимических реакциях в страто- и тропосфере (с участием озона), являются парниковыми газами (парниковый эффект N2O больше чем у СH4 и СО2), участвуют в формировании кислотных дождей.
Один из механизмов образования оксидов азота описан выше в подразделе «Природная фиксация азота». Значительное количество NOХ (NO и NO2) образуется в результате процессов горения – при пожарах (10200 ГтN/год), сжигании топлива (1540 ГтN/год). Максимальное количество техногенных оксидов азота дают промышленно развитые страны, причем более 90% приходится на Северное полушарие. Однако их концентрации в воздухе невысоки, так что пока проблему представляет не глобальное, а локальное и региональное загрязнение.
Оксиды азота являются промежуточными продуктами наземной и океанической нитрификации, денитрификации, нитратного дыхания и других микробиологических процессов. Источник N2O – исключительно деятельность микроорганизмов, причем его концентрация в последнее время быстро возрастает, что приписывают возрастающему употреблению азотных удобрений. В агросистемах до 20% азота может превращаться в N2O. Поток этого оксида из океана оценивается в 5 Мт/год.
Следует отметить, что выделение небольших количеств оксидов азота почвой возможно и без участия микроорганизмов.
