Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРИРОДНЫХ И АНТРОПОГЕН...doc
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
2.21 Mб
Скачать

5.3.2. Промышленная фиксация азота

Получение аммиака из азота воздуха идет в присутствии металлического катализатора при температуре до 550°С и давлении до 250 атм. Азот получают из воздуха, водород – из метана. Основная реакция процесса:

N2+3H2 = 2NH3 .

Объем производства аммиака составляет 100∙106 тN/год, из них более 80% используется для получения удобрений.

5.3.3. Аммонификация

Аммонификация (гниение) происходит после гибели растений и животных в результате деятельности различных микроорганизмов. В результате азотсодержащие вещества (аминокислоты, белки, нуклеиновые кислоты, мочевина) подвергаются микробиологическому разложению с выделением аммиака, сероводорода, углекислого газа и других продуктов (в том числе токсичных и дурно пахнущих). В отличие от процессов микробиологического брожения, сопровождающихся закислением среды, процессы гниения происходят с подщелачиванием среды, так что в природе существует антагонизм между этими анаэробными процессами (развивается либо гнилостная, либо бродильная микрофлора).

Приведем сопряженные реакции аммонификации для двух аминокислот, осуществляемые бактериями рода Clostridium:

CH3−CNH2−COOH (аланин) + 2H2O → CH3COOH + NH3 + CO2 + 4H

2H2N−CH2−COOH (глицин) + 4H → 2CH3COOH + 2NH3 .

Аммиак поступает в атмосферу (откуда после вымывается дождями). Улетучивание аммиака происходит в щелочных условиях, когда ион аммония переходит в аммиак. Такие условия есть на пастбищах, где локально создается высокая концентрация аммиака за счет разложении мочевины уробактериями:

NH2−CO−NH2 + H2O → CO2 + 2NH3.

В водной среде их этих продуктов образуется бикарбонат аммония, подщелачивающий среду; уробактерии могут жить при рН 9…10.

Важная экологическая роль NH3 состоит в том, что это единственное летучее основание нейтрализует в атмосфере серную кислоту (образующуюся из SO2) с образованием аэрозолей состава NH4НSO4.

5.3.4. Нитрификация и другие процессы

Процесс микробной нитрификации быстро идет в почвах и водных экосистемах при доступе воздуха (оптимальный диапазон рН от 7 до 8). В результате образуются более доступные для всасывания растворимые соединения – нитриты и нитраты. Впоследствии в клетках растения или микроорганизма с затратами энергии нитраты восстанавливаются до нитритов, и затем нитриты – до иона аммония, который необходим для образования аминокислот (происходит ассимиляция нитрата).

Образования нитрита осуществляют нитрозные бактерии (рода Nitrosomonas, Nitrosococcus, Nitrosospira и др.). Это многостадийный процесс (в кислой среде он не идет, поскольку исходным веществом является аммиак, а не ион аммония):

NH3 + 2О2 + 2Н → NH2OH + Н2О ;

NH2OH + Н2О → HNO2 + 4H+ ;

4H+ + 2O2 → 2Н2О .

Следующую реакцию превращения нитрита в нитрат осуществляют нитратные бактерии (почвенные бактерии рода Nitrobacter и водные бактерии родов Nitrospira, Nitrococcus, Nitrospina):

4NО2+ 2О2 → 4NО3.

Следует отметить, что в сложившемся микробном сообществе накопление нитритов не происходит, т.к. скорость превращения нитрита в нитрат выше скорости превращения аммония в нитрит.

Существуют и гетеротрофные организмы (бактерии, грибы) способные к нитрификации. Интенсивность такого процесса невелика, но она объясняет тот факт, что и на кислых почвах (чайные плантации, хвойные леса) происходит образование нитрата. Деятельность нитрификации может быть опасна для строительных материалов на основе извести, т.к. азотная кислота реагирует с нею.

В отличие от иона аммония, задерживающегося в почве (особенно благодаря сорбции на отрицательно заряженных частицах – глинистых и гумусовых), нитраты и нитриты хорошо вымываются из нее и быстро переходят в грунтовые и подземные воды. В целом с континентальным стоком эти ионы поступают в моря и океаны, водная миграция ежегодно захватывает 25…80 Мт азота (20…30 кгN/га).

В условиях, когда по каким-то причинам после нитрификации не происходит вымывания или вовлечения нитратов в биологические процессы, происходит их накопление. Так образовались месторождения чилийской селитры (NaNO3 с примесями хлоридов, сульфатов и йодатов) (предполагают, что это результат гетеротрофной нитрификации). Месторождения селитры в Чили начали разрабатывать в 1830‑х, основными потребителями в мире было сельское хозяйство (азотные удобрения) и военная промышленность (производство пороха). Годовой экспорт селитры в начале 20 века достигал миллионов тонн, запасы месторождения в Чили быстро истощались. Проблему решил немецкий химик Фриц Габер, который предложил в начале 20 века экономичный процесс синтеза аммиака.

В средние века для получения селитры (компонента пороха) в затененных местах устраивали селитряницы – кучи навоза и отбросов, где развивались процессы нитрификации. Нитраты (Ca(NO3)2, NaNO3) извлекали при промывке грунта и обрабатывали поташем (K2CO3) для образования KNO3.

Нерациональное использование азотсодержащих удобрений приводит к накоплению нитратов в овощах и загрязнению источников питьевой воды до значений, превышающих ПДК (45 мгNO3/л по СанПиН 2.1.4.1074-01, 10 мгNO3/л по стандартам US EPA). Опасность нитратов для человека состоит в следующем. Микрофлора кишечника и ферменты печени восстанавливают нитраты до нитритов, которые в крови превращают гемоглобин в метгемоглобин, не способный переносить кислород. Из‑за несформированности некоторых процессов детоксикации особенно опасна приобретенная метгемоглобинемия для младенцев.