
- •1 Обзор схем и конструкций рулевых управлений грузо-вых автомобилей
- •1.1 Рулевые механизмы
- •1.1.2 Конструкции рулевых механизмов
- •1.2 Рулевой привод
- •1.3 Усилители рулевого управления
- •2 Описание работы, регулировок и технических характе-ристик проектируемого узла
- •3 Кинематический расчет рулевого управления
- •4 Силовой расчет рулевого управления
- •5 Гидравлический расчет рулевого управления
- •6 Прочностные расчеты элементов рулевого управле-ния
- •6.1 Прочностной расчет зацепления поршень-рейка с сектором в рулевом механизме
- •3.2 Прочностной расчет рулевой сошки
- •6.3 Прочностной расчет продольной рулевой тяги
- •6.4 Прочностной расчет поперечной рулевой тяги Материал поперечной рулевой тяги сталь 20.
- •7 Заключение
- •8 Список использованной литературы
ВВЕДЕНИЕ
Рулевое управление – это совокупность устройств, обеспечивающих поворот управляемых колес автомобиля при воздействии водителя на управляемое колесо. Оно состоит из рулевого механизма и рулевого привода. Для облегчения поворота управляемых колес в рулевой механизм или привод может встраиваться усилитель. Рулевой механизм предназначен для передачи усилия от водителя к рулевому приводу и для увеличения крутящего момента, приложенного к рулевому колесу. Он состоит из рулевого колеса, вала и редуктора. Рулевой привод служит для передачи усилия от рулевого механизма к управляемым колесам автомобиля и для обеспечения необходимого соотношения между углами их поворота. На автомобилях обычно применяется механический рулевой привод, состоящий из системы рычагов и тяг с шарнирами: сошки, продольной тяги, рычага поворотной цапфы, поперечной тяги и поперечных рычагов. Водитель изменяет направление движения автомобиля, поворачивая колеса, которые принято называть управляемыми. Управляемыми могут быть передние и задние колеса, или те и другие вместе. Основным недостатком автомобиля с задними управляемыми колесами по сравнению с автомобилем, имеющим передние управляемые колеса, при прочих равных условиях поворота является то, что отъехать от борта тротуара или стены он может только задним ходом или при очень большом радиусе поворота; кроме того, передняя часть автомобиля при повороте медленнее отклоняется от первоначального направления, чем в случае передних управляемых колес. Если все колеса управляемые, то радиус поворота получается минимальным, что особенно важно при ограниченных углах поворота колес. Однако автомобилю со всеми управляемыми колесами свойственны недостатки автомобиля с задними управляемыми колесами, но в несколько меньшей степени, поскольку управляемыми являются также и передние колеса.
Одним из важнейших элементов устойчивости автомобиля является его управляемость, т. е. качество, обеспечивающее движение в направлении, заданном водителем. Управляемые колеса, повернутые из нейтрального положения, соответствующего прямолинейному движению автомобиля на угол Θ будут катиться в плоскости своего вращения, а не скользить вбок или буксовать пока боковая реакция на каждом из них не будет меньше соответствующего значения. Водитель как легкового, так и грузового автомобиля должен выбрать угол поворота рулевого колеса так, чтобы отклонения автомобиля от заданного направления движения было или оставалось минимальным. Однако между выполняемым при этом поворотом рулевого колеса и требуемым изменением направления движения однозначная функциональная взаимосвязь отсутствует, так как цепочка «поворот рулевого колеса – изменение угла поворота управляемых колес – формирование боковых сил – изменение направления движения» нелинейно вследствие ограниченной жесткости элементов рулевого управления. Поэтому во время езды взаимосвязь между углом поворота рулевого колеса и вызванным им изменением направления движения постоянно изменяется. В результате водитель должен перерабатывать большой объем информации, которая выходит за рамки что визуальной. Сюда следует также отнести, например, вынужденный наклон водителя под воздействием поперечного ускорения и стабилизирующий момент на рулевом колесе, ощущаемый водителем.
Задачей рулевого управления является более однозначное преобразование угла поворота рулевого колеса в угол поворота колес и передача водителю через рулевое колесо информации о состоянии движения автомобиля.
Конструкция рулевого управления должна обеспечивать:
1) Легкость управления, уценивая усилием на рулевом колесе. Для легковых автомобилей без усилителя при движении это усилие составляет 50…10 Н, а с усилителем – 10…20 Н. Для грузовых автомобилей усилие на рулевом колесе регламентируется соответствующими стандартами и при переходе от прямолинейного движения к движению по окружности радиусом 12 м при скорости 10км/ч на горизонтальном участке с сухим твердым покрытием не должно превышать: 250 Н – для рулевого управления без усилителя на пути не более 17 м; 120 Н – для рулевого управления с усилителем на пути не более 11 м; 500 Н – в случае прекращения действия усилителя на пути не более 17 м;
2) качение управляемых колес с минимальным боковым уводом и скольжением при повороте автомобиля. Несоблюдение этого требования приводит к ускоренному изнашиванию шин и снижению устойчивости автомобиля при движении;
3) стабилизацию повернутых управляемых колес, обеспечивающую их возвращение в положение, соответствующее прямолинейному движению, при отпущенном рулевом колесе;
4) предотвращение передачи ударов на рулевое колесо при наезде управляемых колес на препятствия;
5) минимальные зазоры в соединениях. Оцениваются углом свободного поворота рулевого колеса автомобиля, стоящего на сухой, твердой и ровной поверхности в положении, соответствующем прямолинейному движению. По ГОСТ21398—75 этот зазор не должен превышать 150 при наличии усилителя и 50 – без усилителя рулевого управления;
6) отсутствие автоколебаний управляемых колес при работе автомобиля при любых условиях и на любых режимах движения.
1 Обзор схем и конструкций рулевых управлений грузо-вых автомобилей
Р
улевое
управление включает рулевой механизм,
который осуществляет передачу усилия
от водителя к рулевому приводу, и рулевой
привод, осуществляющий передачу усилия
от рулевого механизма к управляемым
колёсам.
Рис. 1.1 Схема рулевого управления: 1 – рулевое колесо; 2 – вал; 3 – червяк; 4 – сектор; 5 – сошка; 6 – продольная тяга; 7, 9, 12 – рычаги; 10 – поперечная тяга; 11 – балка; 13 – поворотная цапфа.
На рис. 1.1 представлена типичная схема рулевого управления для автомобиля с передними управляемыми колёсами и зависимой подвеской передней оси. Здесь каждое управляемое колесо установлено на поворотной цапфе 13, соединенной с балкой 11 моста шкворнем 8. Шкворень неподвижно закреплён на балке и его верхний и нижний концы входят в проушины цапфы. При повороте цапфы за рычаг 7 она вместе с колесом поворачивается вокруг шкворня. Поворотные цапфы соединены между собой рычагами 9 и 12, а также поперечной тягой 10, поэтому колёса поворачиваются одновременно. Поворот управляемых колёс осуществляется при вращении водителем рулевого колеса 1. От него вращение передаётся через вал 2 на червяк 3, находящийся в зацеплении с сектором 4. На валу сектора закреплена сошка 5, которая через продольную тягу 6 и рычаг 7 поворачивает цапфы с управляемыми колёсами.
Рулевое колесо 1, вал 2, червяк 3, и сектор 4 образуют рулевой механизм. Здесь благодаря червячной передаче происходит увеличение усилия, прикладываемого водителем к рулевому колесу. Сошка 5, продольная тяга 6, рычаги 7,9 и поперечная тяга 10 составляют рулевой привод. Тяга 10, рычаги 9,12 и балка 11 образуют рулевую трапецию. Её конфигурация определяет соотношение углов поворота управляемых колёс.
1.1 Рулевые механизмы
Рулевой механизм должен обеспечить лёгкий поворот управляемых колёс, что возможно при достаточно большом передаточном отношении в нём. Однако слишком большое передаточное отношение увеличивает время поворота поэтому его ограничивают. Для легковых автомобилей iр.м=12…20, а для грузовых 15…25, для облегчения управления применяют специальные усилители.
Иногда передаточные отношения делают переменным по ходу рулевого колеса. В среднем положении его делают большим чтобы уменьшить удары на рулевое колесо при наезде на неровности дороги, а в крайних положениях iр.м делают меньше, что сокращает время поворота.
В процессе эксплуатации детали рулевого механизма изнашиваются, особенно в средней части зацепления, соответствующей прямолинейному движению. Износ приводит к увеличению свободного хода в рулевой системе, что снижает безопасность. По этой причине в рулевых механизмах любой конструкции должна быть предусмотрена возможность регулировки зазоров в зацеплениях.
Рулевые механизмы в современных автомобилях разделяют на: червячные, винтовые и шестеренчатые.
В червячном рулевом механизме момент от рулевого колеса к приводу передаётся от червяка, закреплённого на рулевом валу, к червячному сектору, установленному на одном валу с сошкой. У многих рулевых механизмов червяк выполняют глобоидным, а зубья сектора заменяют роликом, вращающимся на подшипниках. Здесь сохраняется зацепление до больших углов поворота, снижаются потери на трение и износ деталей червячной пары.
В винтовом рулевом механизме вращение винта преобразуется в прямолинейное перемещение гайки, на которой нарезана зубчатая рейка, входящая в зацепление с зубчатым сектором. Сектор установлен на валу сошки. Для уменьшения трения соединение винт-гайка осуществляют через шарики. Передаточное число в таком механизме определяется отношением размера начальной окружности сектора к шагу винта.
К шестеренчатым рулевым механизмам относят реечные механизмы и механизмы с коническими зубчатыми передачами.