Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биотех.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
992.77 Кб
Скачать

Раздел "Промышленная биотехнология" Объекты биотехнологии и их биотехнологические функции Растения в биотехнологии

Водный папоротник азолла ценится как органическое азотное удобрение, так как растет в тесном симбиозе с сине-зеленой водорослью анабена. Крошечные листья азоллы (их длина редко превышает один миллиметр) расположены наподобие черепицы – одни листочки перекрывают другие. Короткие нежные корешки свисают вниз.  Строение листа азоллы необычно. Каждый лист состоит из двух лопастей, или сегментов. Верхний сегмент, выступающий над водой, зеленый, из нескольких слоев клеток в толщину, с устьицами на обеих сторонах. Нижний сегмент погружен в воду. Он служит, как предполагают, для всасывания воды. На некоторых нижних сегментах развиваются сорусы. Замечательной особенностью азоллы является симбиоз этого растения с сине-зеленой водорослью анабеной азоллы (Anabaena azollae), из семейства ностоковых (Nostocaceae). Водоросль оккупирует полость, находящуюся на брюшной стороне верхнего, воздушного сегмента, недалеко от его основания. Полость окружена выростами из эпидермальных клеток, которые постепенно обрастают ее, оставляя лишь крошечное центральное отверстие, сообщающееся с внешней средой. Она целиком выстлана эпидермальными клетками, от которых отходят волоски, и наполнена слизью (возможно, продуктом выделения этих волосков). Анабена выполняет функции азотфиксации в этом симбиозе.

Азолла быстро размножается простым делением: часть листьев отделяется от материнского растения и начинает самостоятельную жизнь. При благоприятных условиях малютка способна удваивать свою биомассу каждые трое суток. В сочетании с тем, что симбиоз с анабеной позволяет накапливать много азота в вегетативной массе, такие темпы роста приводят очень быстрому заполнению всей поверхности воды вегетативной массой этого папоротника.  Анабену азоллу выращивают на рисовых полях перед посевом риса, что позволяет снижать количество вносимых минеральных удобрений.

Представители семейства рясковых (Lemnaceae) - самые мелкие и простые по строению цветковые растения, величина которых редко превышает 1 см. Цветут крайне редко. Рясковые - свободноживущие водные плавающие растения. Вегетативное тело напоминает лист или слоевище низших растений, поэтому до начала 18 века ряску относили к слоевищным растениям.

В литературе встречается несколько названий тела рясковых. Самое удачное - листец. Тело рясковых - особая структура, не дифференцированная на листья и стебель (листоветвь), представляющая зеленую пластинку, иногда выпуклую с нижней стороны.

Рясковые (Lemna minor, L. trisulca, Wolfia, Spirodela polyrhiza) служат кормом для животных, для уток и других водоплавающих птиц, рыб, ондатры. Их используют и в свежем, и в сухом виде как ценный белковый корм для свиней и домашней птицы. При всей миниатюрности рясок суперкарликами среди этих малышей флоры справедливо считают не их, а представителей рода Вольфия (Wolffia). Они названы в честь немецкого врача и ботаника Дж. Ф. Вольфа (1778–1806), который впервые их описал. Вольфии похожи на уплощённый шарик. В отличие от многих сородичей, у вольфии вообще нет корней. Минеральные соли эти растения поглощают из воды всей поверхностью своего крошечного тельца – как одноклеточные организмы.

Рясковые содержат много протеина (до 45 % от сухой массы). 45% углеводов, 5% жиров и остальное - клетчатка и т.д. Они высоко продуктивны, неприхотливы в культуре, хорошо очищают воду и обогащают её кислородом. Это делает рясковые ценным объектом для морфогенетических, физиологических и биохимических исследований.

Центральная проблема биотехнологии - интенсификация биопроцессов как за счет повышения потенциала биологических агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине.

В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК. Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами. В частности, возможно управление процессом фиксации атмосферного азота и перенос соответствующих генов из клеток микроорганизмов в геном растительной клетки.

В качестве источников сырья для биотехнологии все большее значение будут приобретать воспроизводимые ресурсы не пищевых растительных материалов, отходов сельского хозяйства, которые служат дополнительным источником как кормовых веществ, так и вторичного топлива (биогаза), органических удобрений.

Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей растениеводства и животноводства с одной стороны, и микробного синтеза - с другой, в формировании продовольственной базы человечества.

Не менее важным аспектом современной микробиологической технологии является изучения участия микроорганизмов в биосферных процессах и направленная регуляция их жизнедеятельности с целью решения проблемы охраны окружающей среды от техногенных, сельскохозяйственных и бытовых загрязнений.

С этой проблемой тесно связаны исследования по выявлению роли микроорганизмов в плодородии почв (гумусообразовании и пополнении запасов биологического азота), борьбе с вредителями и болезнями сельскохозяйственных культур, утилизации пестицидов и др. химических соединений в почве. Имеющиеся в этой области знания свидетельствуют о том, что изменение стратегии хозяйственной деятельности человека от химизации к биологизации земледелия оправдывается как с экономической, так и с экологической точек зрения. В данном направлении перед биотехнологией может быть поставлена цель регенерации ландшафтов.

Ведутся работы по созданию биополимеров, которые будут способны заменить современные пластмассы. Эти биополимеры имеют существенное преимущество перед традиционными материалами, так как нетоксичны и подвержены биодеградации, то есть легко разлагаются после их использования, не загрязняя окружающую среду.

Биотехнологии, основанные на достижениях микробиологии, наиболее экономически эффективны при комплексном их применении и создании безотходных производств, не нарушающих экологического равновесия. Их развитие позволит заменить многие огромные заводы химической промышленности экологически чистыми компактными производствами.

Важным и перспективным направлением биотехнологии является разработка способов получения экологически чистой энергии. Получение биогаза и этанола были рассмотрены выше, но есть и принципиально новые экспериментальные подходы в этом направлении. Одним из них является получение фотоводорода. Если из хлоропластов выделить мембраны, содержащие фотосистему 2, то на свету происходит фотолиз воды - разложение на кислород и водород. Моделирование процессов фотосинтеза, происходящих в хлоропластах, позволило бы запасать энергию Солнца в ценном топливе - водороде. Преимущества такого способа получения энергии очевидны:

  • наличие избытка субстрата, воды;

  • нелимитируемый источник энергии - Солнце;

  • продукт (водород) можно хранить, не загрязняя атмосферу;

  • водород имеет высокую теплотворную способность (29 ккал/г) по сравнению с углеводородами (3.5 ккал/г);

  • процесс идет при нормальной температуре без образования токсических промежуточных продуктов;

  • процесс циклический, так как при потреблении водорода регенерируется субстрат - вода.

Другой механизм превращения энергии у галофитных бактерий Halobacterium halobium, которые используют энергию солнца, поглощаемую пурпурным пигментом бактериородопсином, находящимся в мембране клетки. Поглощение света вызывает химические и физические изменения в мембране, приводящие к направленному транспорту протонов водорода с одной стороны мембраны на другую и созданию электрохимического градиента. Следствием этого является синтез аденозинтрифосфорной кислоты. H.halobium можно культивировать в мелких водоемов с высоким содержанием NaCl и других минеральных солей. Из 10 литров бактериальной культуры можно получить 0,5 грамма мембран, содержащих до 100000 молекул пигмента. Пигмент можно фиксировать на подложках, обладающих физическими и химическими свойствами для транспорта протонов.