- •Основы моделирования систем
- •Введение в дисциплину "Основы моделирования систем"
- •Проблематика, задачи и цели моделирования
- •Технологии функционирования моделирующих программ
- •Обзор и классификация моделирующих программ
- •Решатели моделирующих программ
- •Понятие о структурном и мультидоменном физическом моделировании
- •Идея мультидоменного физического моделирования
- •Введение в технологию моделирования на основе направленных графов
- •Принцип поточного исполнения блок-схем (моделей)
- •Библиотеки блоков графических языков
- •Блоки обладающие эффектом памяти
- •Понятие о начальных условиях модели (Initial Condition)
- •Понятие о параметрах модели
- •Понятие о методах интегрирования
- •Выбор шага симуляции и метода интегрирования
- •Каскадные алгебраические петли
- •Каскодные алгебраические петли
- •Введение в технологию мультидоменного физического моделирования с применением ненаправленных графов
- •Принципы построения графа схемы физической принципиальной
- •Элементы ненаправленного графа
- •Пассивные элементы ненаправленного графа (потребители энергии)
- •Активные элементы ненаправленного графа (источники энергии)
- •Узлы ненаправленного графа
- •Рекомендации к использованию библиотеки элементов
- •Об альтернативном построении графа схемы физической принципиальной
- •Основы построения моделей на базе гибрида из направленных и ненаправленных графов при мультидоменном физическом моделировании
- •Связывание направленных и ненаправленных графов. Особенности условных графических обозначений пограничных элементов
- •Ситуации, требующие соблюдения условно-положительного направления тока энергетической материи для пассивных rlc-элементов
- •Понятие о датчике потенциала – w-элементе
- •Пример гибридно-графовой модели транзисторного усилителя с элементами инкапсуляции графов
- •Обзор методов анализа моделей, систем и сигналов
- •Идентификация моделей
- •Символьный анализ математического описания моделей
- •Частотный анализ моделей и систем
- •Литература
- •Обзор архитектурного построения программ математического моделирования динамических систем Введение
- •Модульная структура программ математического моделирования динамических систем
- •Архитектура математического ядра моделирующих программ с поточной моделью управления
- •Графический интерфейс программ математического моделирования динамических систем
- •Шлюз Visio2SimKernel
- •Xml хранилище модели
- •Литература
- •Что же с тоэ? или о структурном кризисе в методике преподавания блока дисциплин связанных с расчетом цепей преобразования энергий
- •Уровни сложности задач расчета цепей преобразования энергий
- •О том, как программы мультидоменного математического моделирования динамических систем "выкинули на помойку" учебники по теоретическим основам цепей
- •Сценарий изменения методики преподавания "Теоретических основ цепей" и обзор затруднений
Каскодные алгебраические петли
В отличие от каскадных, каскодные алгебраические петли появляются в структурах функционирующих параллельно (см. рис.). В системах автоматического регулирования они встречаются редко, но любая попытка исследователя составить модель, со структурой, четко соответствующей физическим модулям реальной системы (речь о ненаправленных графах) приведет к появлению подобных структур.
Существует несколько способов разрыва подобной петли. Разные программы математического моделирования, использующие направленные графы (VisSim, Simulink и пр.) разрывают каскодные алгебраические петли так, как показалось правильным их авторам (не предупреждая об этом пользователя). Часто точка разрыва каскодной петли, а, следовательно, и результаты симуляции меняются в зависимости от того, какие блоки подключены к выходам (происходит это по причине разной приоритетности математических операций).
Введение в технологию мультидоменного физического моделирования с применением ненаправленных графов
Главной задачей, решаемой программами математического моделирования динамических систем, является симуляция движения их координат. Сегодня можно выделить два эволюционных этапа развития решателей этих программ. На первом этапе в программах появляется явный решатель. Это библиотека классических подпрограмм (функций), которые реализуют операцию интегрирования. Таким образом, используя дискретные квази-аналоги интеграторов, пользователь может решать дифференциальные уравнения. Лишь на втором этапе в моделирующих программах появляется неявный решатель. Это библиотека классических подпрограмм, которые предназначены для итерационного поиска корней алгебраических уравнений.
Если моделирующая программа может грамотно использовать неявный решатель, то из программы для моделирования систем автоматического регулирования она может перейти в разряд программ для мультидоменного моделирования физических систем, с применением схем физических принципиальных (например, электрических).
Основу представляемой технологии моделирования составляют модели девяти примитивов, которые используются при составлении схем замещений. Упомянутым примитивам (моделям) присвоены условные графические обозначения, заимствованные из схем электрических принципиальных, но суть моделей распространяется на любой из семи энергетических доменов: электрический, магнитный, тепловой, гидравлический, акустический, механический и ротационный.
Принципы построения графа схемы физической принципиальной
Принцип 1 (для шин)
Все элементы и узлы ненаправленного графа соединяются шинами, в которых есть два проводника распространяющие сигналы в противоположных направлениях. (Упомянутые сигналы – это физические величины первого и второго рода конкретного энергетического домена, для которых формулируются постулаты о сохранении материи и энергетического потенциала).
Принцип 2 (для элементов)
Все элементы графа должны быть двухвыводными. (Схема замещения любого устройства с большим количеством выводов должна состоять из фундаментальных двухвыводных элементов и узлов). Оба вывода у элементов должны быть оборудованы разъемами для подключения двухпроводных шин.
Принцип 3 (для узлов)
Узлы бывают двух типов: распределяющие и аккумулирующие. Узлы ненаправленного графа трехвыводные. (Узлы, в которых сходится большее количество ветвей, строятся каскадированием трехвыводных узлов). Каждый вывод узла должен иметь разъем для подключения двухпроводных шин.
Принцип 4 (для разъемов)
Элементы графа и его шины оборудуются разъемами "мама" и "папа". Половина узлов ненаправленного графа оборудуется одним разъемом "папа" и двумя разъемами "мама". Вторая половина узлов оборудуется одним разъемом "мама" и двумя разъемами "папа". (Графический интерфейс моделирующих программ не должен отображать этой особенности ненаправленного графа. Программы самостоятельно выбирают тип узлов, "скрыто переворачивают" элементы графа и шины для правильной коммутации).
