- •Основы моделирования систем
- •Введение в дисциплину "Основы моделирования систем"
- •Проблематика, задачи и цели моделирования
- •Технологии функционирования моделирующих программ
- •Обзор и классификация моделирующих программ
- •Решатели моделирующих программ
- •Понятие о структурном и мультидоменном физическом моделировании
- •Идея мультидоменного физического моделирования
- •Введение в технологию моделирования на основе направленных графов
- •Принцип поточного исполнения блок-схем (моделей)
- •Библиотеки блоков графических языков
- •Блоки обладающие эффектом памяти
- •Понятие о начальных условиях модели (Initial Condition)
- •Понятие о параметрах модели
- •Понятие о методах интегрирования
- •Выбор шага симуляции и метода интегрирования
- •Каскадные алгебраические петли
- •Каскодные алгебраические петли
- •Введение в технологию мультидоменного физического моделирования с применением ненаправленных графов
- •Принципы построения графа схемы физической принципиальной
- •Элементы ненаправленного графа
- •Пассивные элементы ненаправленного графа (потребители энергии)
- •Активные элементы ненаправленного графа (источники энергии)
- •Узлы ненаправленного графа
- •Рекомендации к использованию библиотеки элементов
- •Об альтернативном построении графа схемы физической принципиальной
- •Основы построения моделей на базе гибрида из направленных и ненаправленных графов при мультидоменном физическом моделировании
- •Связывание направленных и ненаправленных графов. Особенности условных графических обозначений пограничных элементов
- •Ситуации, требующие соблюдения условно-положительного направления тока энергетической материи для пассивных rlc-элементов
- •Понятие о датчике потенциала – w-элементе
- •Пример гибридно-графовой модели транзисторного усилителя с элементами инкапсуляции графов
- •Обзор методов анализа моделей, систем и сигналов
- •Идентификация моделей
- •Символьный анализ математического описания моделей
- •Частотный анализ моделей и систем
- •Литература
- •Обзор архитектурного построения программ математического моделирования динамических систем Введение
- •Модульная структура программ математического моделирования динамических систем
- •Архитектура математического ядра моделирующих программ с поточной моделью управления
- •Графический интерфейс программ математического моделирования динамических систем
- •Шлюз Visio2SimKernel
- •Xml хранилище модели
- •Литература
- •Что же с тоэ? или о структурном кризисе в методике преподавания блока дисциплин связанных с расчетом цепей преобразования энергий
- •Уровни сложности задач расчета цепей преобразования энергий
- •О том, как программы мультидоменного математического моделирования динамических систем "выкинули на помойку" учебники по теоретическим основам цепей
- •Сценарий изменения методики преподавания "Теоретических основ цепей" и обзор затруднений
Узлы ненаправленного графа
Распределяющий (материю) узел
Основу распределяющего узла составляет обслуживаемый неявным решателем трехвыводной сумматор, математическое уравнение которого соответствует постулату о сохранении материи (например, это может быть I закон Кирхгофа). Соблюдение этого постулата обеспечивает датчик неявного решателя (блок constraint) на выходе сумматора. Перераспределение же потоков материи I2 и I3 контролирует второй датчик неявного решателя, фиксирующий разность потенциалов φ2 и φ3. Если (φ2−φ3)>0, то баланс в цепи может быть найден при уменьшении потока I2 и увеличении I3. Если (φ2−φ3)<0, то неявному решателю потребуется увеличить поток I2 и уменьшить I3. (Изменения потоков материи приводят к тому, что элементы ненаправленного графа меняют значения соответствующих потенциалов). Таким образом, принцип работы узла состоит в том, чтобы распределить поток материи I1 на потоки I2 и I3 так, чтобы соблюдалось равенство потенциалов φ2 и φ3 (после нахождения баланса цепи потенциал φ1 будет равен потенциалам φ2 и φ3).
Аккумулирующий (материю) узел
Структурная схема аккумулирующего узла существенно проще (см. рис.) и особых комментариев не требует.
Рекомендации к использованию библиотеки элементов
Рабочие файлы: [Элементы] [RLC схема] [Схема электрическая] [Ее граф в VisSim'е]
Описанные модели элементов ненаправленного графа являются идеализированными, т.е. имеют стремящиеся к нулю внутренние сопротивления, обладают высокой добротностью, или совершенно не имеют инерционных свойств, как то и требуется для схем замещений. Отсюда следует, что неправильно составленный ненаправленный граф может привести к перегрузке мантиссы решателей. Приведем примеры для электрического энергетического домена:
Замыкание заряженного конденсатора или источника электродвижущей силы на нулевое сопротивление или конденсатор с другим падением напряжения.
Размыкание индуктивной катушки с электрическим током без подключения шунтирующего резистора.
Другой причиной проблем с решателями могут послужить элементы, установленные на рабочее поле, но не подключенные к графу. Далеко не у всех моделирующих программ неявные решатели умеют находить и исключать из расчетов те датчики нулевого баланса и блоки неизвестная, которые не связаны функциональной зависимостью (т.е. не подключены). По той же причине не следует создавать не связанные, хотя бы потенциально, энергетические цепи, поскольку в этом случае, так же образуются независимые области итерационного подбора.
Не следует так же забывать, что итерационный поиск баланса для десятков, а то и сотен координат (переменных) энергетических цепей выполняется на каждом шаге симуляции. Очевидно, что итерационный процесс будет тем короче, чем меньше приращения значений координат. Отсюда следует рекомендация отказываться, в критических случаях, от задающих генераторов, чьи выходные последовательности имеют разрывы: меандр, пила, и т.д. (Пропустите сигналы соответствующих источников опорного напряжения, через апериодические звенья первого порядка с малой постоянной времени).
