Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы моделирования систем.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
525.85 Кб
Скачать

Элементы ненаправленного графа

Графические образы девяти простейших библиотечных элементов ненаправленных графов, а так же поясняющая технику подключений схема приведены на рисунке. При сборке схемы выводы разных цветов ни когда не соединяются между собой. Та же схема подключений помогает понять, почему направленные графы программ VisSim, Simulink, MVTY (при использовании описываемой методики моделирования) называют ненаправленным или бинаправленным.

Пассивные элементы ненаправленного графа (потребители энергии)

В каждом из энергетических доменов существует от одного до трех (известных) простейших физических устройств, которые называются электрическим, магнитным, тепловым, гидравлическим, акустическим, механическим, ротационным и др. сопротивлениями. Таким образом, чуть округлив, можно сказать, что для названных энергетических доменов закон Ома имеет 21 формулировку. Формулы закона Ома записываются тремя способами:

Три формы записи закона Ома определяют три формальных примитива, которые являются пассивными элементами ненаправленного графа, т.е. моделями потребителей энергии.

Определимся так же с тем, что все элементы ненаправленного графа будут асимметричными, т.е. с тем, что именно поток материи по элементам будет определять разность энергетических потенциалов на их выводах, а не наоборот.

Безынерционный элемент (активное сопротивление)

Иконка безынерционного потребителя энергии, а так же его внутренняя структурная схема показаны на рисунке. От верхнего разъема к нижнему (зеленые контакты) по элементу протекает поток материи i. Потенциал φ2 на красном контакте нижнего разъема элемента известен (определяется другими элементами цепи). Потенциал φ1 красного контакта верхнего разъема вычисляется с помощью закона Ома, поскольку величина потока i и сопротивление R для элемента известны: φ12+iR.

Реактивный элемент 1

Внутренняя структурная схема реактивных элементов принципиально не отличается от структурной схемы безынерционного потребителя энергии. Различие состоит лишь в способе расчета создаваемого потоком падения напряжения. В частности, реактивный элемент индуктивного характера должен обеспечивать в заданном масштабе (L) тем большую разность потенциалов, чем больше скорость изменения протекающего по нему потока (di/dt). Это падение напряжения вычисляется с помощью блоков unknown (неизвестная) и constraint (баланс_в_нуле) следующим образом (см. блок-схему). На каждом шаге симуляции неявный решатель моделирующей программы с помощью итерационного процесса подбирает такое выходное значение блока unknown, чтобы на входе блока constraint было нулевое значение. Однако интегратор – это блок обладающий эффектом памяти – он разрывает сигнальную цепь – сигнал на его входе на данном шаге симуляции ни как не определяет выходное значение (сигнал на входе интегратора определяет его выходное значение лишь на следующем, в данный момент еще не вычисляемом шаге симуляции). Баланс на входе блока constraint подбирается через цепь верхнего разъема, и ту схему, к которой элемент подключен. Т.е. фактически подбирается не выходное значение интегратора, а поток, протекающий по элементу. Если баланс будет вычислен, то значение сигнала на входе интегратора будет равно производной потока, а на входе делителя – искомому напряжению.

Приведенное описание принципа работы блок-схемы позволяет легко понять, что установка начального условия на интеграторе (Initial Condition), эквивалентна определению величины начального потока материи по элементу.

Реактивный элемент 2

Реактивный элемент емкостного характера должен обеспечивать в заданном масштабе (1/C) разность потенциалов пропорциональную интегралу протекающего по нему потока i, что и обеспечивается блок-схемой показанной на рисунке.

Установка начального условия на интеграторе данной блок-схемы эквивалентна определению величины начального падения напряжения на элементе.