- •Глава I
- •Глава 1 5
- •Введение
- •Глава 1
- •1. Термины и определения*
- •2. Дефекты сварных соединений (рд 03-606-03)
- •3. Российские стандарты по радиационному контролю
- •4. Источники ионизирующего излучения и детекторы излучения
- •4.1. Природа ионизирующих излучений.
- •4.1.1. Строение атома. Модель атома Резерфорда-Бора.
- •4.1.2 Естественная радиоактивность.
- •4.1.3. Искусственная радиоактивность.
- •4.1.4. Закон радиоактивного распада.
- •4.1.5. Доза излучения.
- •4.1.6. Ослабление рентгеновского и - излучения веществом.
- •4.1.6.1. Фотоэффект
- •4.1.6.3. Эффект образования пар.
- •4.1.7. Основной закон радиационной дефектоскопии.
- •4.1.8. Диаграмма Эванса.
- •Явления, преобладающие при поглощении -лучей различных энергий.
- •4.1.9. Защита от -излучения.
- •Толщина материалов (в см) из свинца, железа и бетона, ослабляющая поток у квантов различных энергий в 10 раз
- •4.2. Радионуклидные источники.
- •4.2.1. Классификация радионуклидных источников по энергии:
- •4.2.2. Гамма - дефектоскопы.
- •4.3. Рентгеновские аппараты.
- •4.3.1. Рентгеновские аппараты состоят из следующих основных элементов:
- •4.3.2. Высоковольтная часть рентгеновского аппарата
- •4.3.3. Контрольная аппаратура.
- •4.3.4. Нормальный ряд рентгеновских аппаратов:
- •4.4. Радиографическая плёнка и ее характеристики.
- •5. Методика и техника радиографического контроля.
- •5.1. Физико-технические основы радиографического контроля.
- •5.2 Влияние материала несплошности на её радиационное изображение.
- •5.3 Качество радиографического снимка и чувствительность контроля.
- •5.3.1. Контрастность и резкость изображения.
- •5.3.2. Влияние жесткости излучения, толщины и плотности просвечиваемого материала на выявляемость дефектов.
- •5.3.3. Влияние геометрии просвечивания на качество снимка.
- •5.3.4. Влияние характера и ориентации дефекта на его выявляемость.
- •5.3.5. Влияние рассеянного излучения на качество радиографического снимка.
- •5.3.6. Радиографические плёнки и флуоресцирующие экраны.
- •5.3.7. Факторы, влияющие на качество радиографического изображения
- •Факторы, влияющие на качество радиографического изображения
- •5.4 Особенности радиографического контроля труб малого диаметра.
- •5.5 Определение глубины залегания дефектов.
- •5.6 Требования методических документов по радиационному контролю.
- •6. Аппаратура и материалы для радиографического контроля сварных соединений
- •6.1 Область применения радиографического метода
- •6.2 Основные технические характеристики рентгеновских аппаратов.
- •Технические характеристики рентгеновских аппаратов непрерывного действия
- •Технические характеристики моноблочных рентгеновских аппаратов «Интровольт»
- •Технические характеристики переносных рентгеновских моноблочных аппаратов «ратмир»
- •Технические характеристики стационарных рентгеновских аппаратов кабельного типа «экстравольт»
- •Технические характеристики рентгеновских аппаратов схт
- •Технические характеристики отечественных импульсных рентгеновских аппаратов
- •Зарубежные моноблочные рентгеновские аппараты непрерывного действия.
- •6.3. Основные технические характеристики гамма - дефектоскопов.
- •Технические характеристики отечественных гамма - дефектоскопов.
- •6.4. Основные типы и характеристики радиографических пленок.
- •Типы и характеристики отечественных радиографических плёнок
- •Сравнительные характеристики радиографических плёнок различных типов
- •Радиографические плёнки различных фирм - производителей.
- •Коэффициенты относительной экспозиционной эквивалентности для плёнок по en 584.
- •Фирмы-производители и марки радиографических плёнок.
- •Типы упаковок радиографической плёнки kodak
- •Типы упаковок радиографической плёнки agfa
- •7. Выбор параметров радиографического контроля (по гост 7512-82)
- •7.1 Подготовка к контролю.
- •Примеры сокращенной записи дефектов при расшифровке снимков и документальном оформлении результатов радиографического контроля (по гост 7512-82)
- •7.2 Геометрия просвечивания.
- •7.3 Чувствительность радиографического контроля.
- •Классы чувствительности радиографического контроля (гост 7512-82)
- •Классификация сварных соединений и требуемая чувствительность радиографического контроля (гост 23055-78)
- •8. Визуализация и обработка радиографических изображений.
- •8.1 Фотообработка радиографической плёнки.
- •8.2. Расшифровка радиографических снимков.
- •Основные технические характеристики серийно выпускаемых негатоскопов и денситометров
- •8.3. Рентгенограммы с изображением дефектов сварных швов.
- •8.4. Цифровая радиография.
- •8.4.4.2. Системы цифровой рентгенографии на основе запоминающих люминофоров.
- •8.4.5. Цифровые рентгенограммы, полученные с использованием комплекса «Фосфоматик-21» и запоминающих люминофорных пластин
- •8.4.6. Цифровые рентгенограммы, полученные с использованием апк «Эксперт».
- •9. Организация работ по радиографическому контролю
- •10.Радиационная безопасность
- •10.1 Биохимическое действие ионизирующего излучения.
- •10.2 Нормативные документы по радиационной безопасности.
- •Единицы измерения ионизирующих излучений
- •10.3 Техника безопасности при проведении работ по рентгеновской и гамма - дефектоскопии.
- •10.3.1 Общие требования.
- •10.3.2 Требования техники безопасности при проведении дефектоскопических работ с радионуклидными источниками.
- •Средства индивидуальной защиты персонала, выполняющего радиографический контроль
- •10.4 Требования радиационной безопасности при транспортировании радионуклидных дефектоскопических средств.
- •10.4.1 Транспортные категории радиоактивных установок.
- •10.4.2 Общие требования перевозки радионуклидных источников различными видами транспорта.
- •10.4.3 Необходимые условия для проведения работ по контролю с выездом в сторонние организации.
- •10.4.4 Аварийные ситуации с радиоактивными источниками и меры по их предупреждению.
- •10.4.5 Устройство и регистрация рентгенкабинетов и хранилищ для радионуклидных источников излучения.
- •10.5 Комплекс защитных мероприятий при возникновении радиационных аварий.
- •11. Метрологическое обеспечение радиографического контроля (гост 7512-82)
- •12. Практическое применение методических и нормативных документов при радиографическом контроле сварных соединений.
- •12.2 Примеры разработки технологических карт радиографического контроля.
- •12.2.1 Разработка технологической карты радиографического контроля листового сварного соединения.
- •12.2.1.1. Выбор источника излучения.
- •12.2.1.2 Расчет геометрии просвечивания.
- •12.2.1.3 Выбор радиографической плёнки и усиливающих экранов.
- •12.2.1.4 Выбор эталона чувствительности.
- •12.2.1.5 Расчет времени экспозиции.
- •Технологическая карта радиографического контроля № 12-2-1
- •12.2.2 Разработка технологической карты радиографического контроля кольцевых сварных соединений труб диаметром менее 100 мм.
- •12.2.2.1. Выбор источника излучения.
- •12.2.2.2 Расчет геометрии просвечивания.
- •12.2.2.3 Выбор радиографической плёнки, усиливающих экранов.
- •12.2.2.4 Выбор эталона чувствительности.
- •12.2.2.5 Расчет времени экспозиции.
- •Технологическая карта радиографического контроля № 12-2-2
- •12.2.3 Разработка технологической карты радиографического контроля кольцевых сварных соединений труб диаметром более 100 мм.
- •12.2.3.1. Выбор источника излучения.
- •12.2.3.2 Расчет геометрии просвечивания.
- •12.2.3.3 Выбор радиографической плёнки и усиливающих экранов.
- •12.2.3.4 Выбор эталона чувствительности.
- •12.2.3.5 Расчет времени экспозиции.
- •Технологическая карта радиографического контроля № 12-2-3
- •12.2.4 Разработка технологической карты панорамного радиографического контроля кольцевых сварных соединений.
- •12.2.4.1. Выбор источника излучения.
- •12.2.4.2 Выбор радиографической плёнки и усиливающих экранов.
- •12.2.4.3 Расчет геометрии просвечивания.
- •12.2.4.4 Выбор эталона чувствительности.
- •12.2.4.5 Расчет времени экспозиции.
- •Технологическая карта радиографического контроля № 12-2-4
- •12.2.5 Разработка технологической карты радиографического контроля кольцевых сварных соединений по схеме рис. 3,ж пнаэ г-7-017-89.
- •12.2.5.1. Выбор источника излучения и геометрии просвечивания.
- •12.2.5.2 Выбор радиографической плёнки и усиливающих экранов.
- •12.2.5.3 Выбор эталона чувствительности.
- •12.2.5.4 Расчет времени экспозиции.
- •Технологическая карта радиографического контроля № 12-2-5
- •12.2.6 Разработка технологической карты радиографического контроля кольцевых сварных соединений по схеме рис. 3,з пнаэг-7-017-89.
- •12.2.6.1. Выбор средств и режимов радиографического контроля.
- •Технологическая карта радиографического контроля № 12-2-6
- •12.2.7 Разработка технологической карты радиографического контроля сварных соединений изделий диаметром 10 м и более.
- •12.2.7.1. Выбор источника излучения.
- •12.2.7.2 Расчет геометрии просвечивания.
- •12.2.7.3 Выбор радиографической плёнки и усиливающих экранов
- •12.2.7.4 Выбор эталона чувствительности.
- •12.2.7.5 Расчет времени экспозиции.
- •Технологическая карта радиографического контроля № 12-2-7
- •12.2.8 Разработка технологической карты радиографического контроля нахлесточных сварных соединений.
- •12.2.8.1. Выбор источника излучения.
- •12.2.8.2 Расчет геометрии просвечивания.
- •12.2.8.3 Выбор радиографической плёнки, усиливающих экранов.
- •Выбор эталона чувствительности
- •Расчет времени экспозиции.
- •Технологическая карта радиографического контроля № 12-2-8
- •12.2.9 Разработка технологической карты радиографического контроля таврового сварного соединения при ограниченной ширине привариваемого элемента.
- •12.2.9.1. Выбор источника излучения.
- •12.2.9.2 Расчет геометрии просвечивания.
- •12.2.9.3 Выбор радиографической плёнки и усиливающих экранов.
- •12.2.9.4 Выбор эталона чувствительности.
- •12.2.9.5 Расчет времени экспозиции.
- •Технологическая карта радиографического контроля № 12-2-9
- •13. Особенности радиографического контроля сварных швов из аустенитных сталей, имеющих крупнозернистую структуру.
- •Условная запись дефектов при расшифровке снимков и документальном оформлении результатов радиографического контроля (гост 7512-82)
- •Журнал проверки фоторастворов
- •Выбор расстояния от источника излучения до контролируемого сварного соединения и длины или числа контролируемых участков (пнаэ г7-017-89)
- •Журнал радиографического контроля
- •Форма заключения по результатам радиографического контроля
5.3.2. Влияние жесткости излучения, толщины и плотности просвечиваемого материала на выявляемость дефектов.
Жесткость излучения, толщина и плотность просвечиваемого материала оказывают существенное влияние на контрастность изображения и выявляемость дефектов.
С увеличением жесткости излучения возрастает проникающая способность лучей, т.е. уменьшаются их потери при прохождении через материал заданной толщины. При просвечивании одной и той же детали жесткие лучи поглощаются меньше, чем мягкие, поэтому разница в интенсивности прошедшего и падающего излучения, а следовательно, контрастность изображения дефекта на снимке будет меньше.
Влияние энергии излучения на контрастность снимка иллюстрируется рис. 5.8. Просвечивание ступенчатого образца излучением оптимальной энергии позволяет получить высококонтрастные изображения ОК на радиографическом снимке. При просвечивании этого образца более жестким излучением контрастность изображения ОК ухудшается. Увеличение жесткости излучения приводит к снижению выявляемости мелких дефектов, что также связано с уменьшением поглощения жестких лучей материалом.
Рис. 5.8. Влияние энергии излучения на контрастность снимка. .
Степень ослабления рентгеновских лучей материалом зависит от толщины и плотности материала. Чем больше толщина или плотность материала, тем более жесткое излучение требуется, чтобы обеспечить хорошую контрастность снимка. Так, например, при просвечивании стальной и алюминиевой детали одинаковой толщины для получения одинаковой контрастности снимка стальную деталь следует просвечивать более жестким излучением, чем алюминиевую.
Просвечивая мягким излучением детали малой толщины, можно выявить тем более мелкие дефекты, чем выше плотность материала. Однако возможность использования мягкого излучения ограничивается тем, что при просвечивании больших толщин чрезмерное ослабление лучей приводит к заметному снижению плотности снимка и, следовательно, к необходимости увеличения экспозиции.
При выборе энергии излучения необходимо учитывать конкуренцию двух процессов. Во-первых, с понижением энергии первичного излучения увеличивается линейный коэффициент ослабления, и это улучшает выявляемость дефектов. Во-вторых, с увеличением просвечиваемой толщины увеличивается рассеяние первичного излучения, и это ухудшает выявляемость дефекта.
На практике существуют некоторые оптимальные интервалы рабочих напряжений, при которых учитываются как плотность материала детали, так и условия, обеспечивающие приемлемую контрастность снимка.
Оптимальные источники и энергия излучения в зависимости от толщины и плотности просвечиваемого материала приведены в ГОСТ 20426-75 (см. табл. 6-1, 6-2.).
5.3.3. Влияние геометрии просвечивания на качество снимка.
К геометрическим факторам, влияющим на качество снимка, относятся следующие:
фокусное пятно (размер активной части) источника излучения;
фокусное расстояние - расстояние от источника излучения до радиографической плёнки;
расстояние между ОК и радиографической плёнкой.
Каждый из этих факторов определяет резкость изображения ОК на радиографическом снимке.
Влияние фокусного пятна на резкость изображения объясняется тем, что проекцию дефекта на плёнке создают лучи, выходящие из различных точек фокуса. Расхождение лучей приводит к размытости изображения. Чем меньше размер фокусного пятна у источника излучения, тем резче получается изображение дефекта (рис. 5.9) при постоянном фокусном расстоянии от рентгеновского излучателя до плёнки.
Помимо размера фокусного пятна трубки (размера активной части гамма- источника), на резкость изображения влияет фокусное расстояние. При малом фокусном расстоянии изображение на снимке получается нерезким. С увеличением фокусного расстояния резкость изображения возрастает (рис. 5.10). Однако, при значительном увеличении фокусного расстояния снижается интенсивность излучения, попадающего на деталь, что требует увеличения времени экспозиции. Это снижает производительность контроля и может привести к ухудшению качества снимка за счет увеличения рассеянного излучения.
Рис. 5.9 Влияние величины фокусного пятна на качество снимка.
'■
Рис. 5.10 Влияние расстояния образец - источник на качество снимка.
Рис. 5.11 Влияние расстояния образец - плёнка на качество снимка.
Существенное влияние на резкость изображения оказывает расстояние от радиографической плёнки до контролируемого образца (рис. 5.11).
Чем ближе плёнка к образцу, тем лучше резкость изображения и выше выявляемость дефектов. По этой же причине при контроле толстостенных изделий лучше выявляются дефекты, расположенные ближе к радиографической плёнке по сравнению с такими же дефектами, расположенными ближе к источнику излучения.
Улучшить выявляемость дефектов, наиболее отдаленных от плёнки, можно путем увеличения фокусного расстояния.
