- •Управление и регулирование в нефтяной и газовой промышленности (нгп). Характеристики и особенности объектов управления и регулирования в нгп.
- •Классификация сар.
- •Статика и динамика систем. Линеаризация уравнений динамики.
- •Задачи синтеза сар. Характеристики переходных процессов, их виды.
- •5. Расчет параметров настройки регулятора методом расширенных афх
- •Расчет параметров настройки регулятора методом расширенных афх.
- •Регулирование объектов с запаздыванием. Понятие расширенного объекта.
- •Передаточная функция регулирующего клапана. Передаточные функции первичных преобразователей давления, расхода, уровня, температуры.
- •Расчет параметров настройки регулятора методом незатухающих колебаний.
- •Синтез многоконтурных сар. Задачи и пути реализации таких систем.
- •Каскадная система регулирования. Методика расчета.
- •Регулирование уровня с помощью каскадной сар. Методика расчета системы.
- •Системы несвязанного регулирования.
- •Системы автономного регулирования.
- •Системы регулирования объектов с запаздыванием. Регулятор Смита.
- •Инвариантные сар
- •Комбинированные инвариантные сар. Способы их реализации. Метод расчета параметров настройки компенсаторов. Комбинированная инвариантная система: 1 вариант.
- •Нахождение кривой разгона. Методы обработки экспериментальных данных.
- •Методы расчета параметров настройки регуляторов.
- •Формульный метод расчета параметров настройки регуляторов.
- •Расчет параметров настройки регулятора методом затухающих колебаний и при наличии шумов.
- •Инвариантная стабилизация в двухтактной схеме вторичного электропитания.
- •Законы регулирования. Импульсные и непрерывные регуляторы.
- •Настройка регуляторов опытным путем.
- •Порядок составления математического описания объектов регулирования.
- •Сепаратор газожидкостной смеси как объект управления. Его математическая модель.
- •4.2 Расчет оптимальных настроек регулятора
- •Теплообменник пар-жидкость как объект регулирования. Его математическая модель. Общая характеристика тепловых процессов Фазовое равновесие теплоносителей.
- •Фазовые переходы в однокомпонентных системах.
- •Фазовые переходы в многокомпонентных системах.
- •Связь основных параметров теплоносителей в газовой фазе.
- •Физические параметры и скорости движения теплоносителей.
- •Тепловая нагрузка аппарата.
- •Тепловые балансы теплоносителя при изменении его агрегатного состояния.
- •Основное уравнение теплопередачи.
- •Выражения для определения коэффициента к в зависимости от способа передачи тепла.
- •Движущая сила при прямотоке теплоносителей.
- •Движущая сила при противотоке теплоносителей.
- •Типовая схема автоматизации кожухотрубного теплообменника.
- •Типовое решение автоматизации.
- •(С изменяющимся агрегатным состоянием теплоносителя).
- •Математическое описание на основе физики процесса.
- •Информационная схема объекта.
- •Анализ динамических характеристик парожидкостного теплообменника как объекта управления температурой.
- •Анализ статической характеристики объекта.
- •Методы получения математического описания объектов регулирования. Построение математической модели емкости с жидкостью.
- •Автоматизация газо- и нефтеперекачивающих агрегатов. Работа газопровода совместно с кс (компрессорной станцией).
- •Асу тп газонефтепроводов. Критерии управления. Принципы управления и защиты от коррозии. Контроль утечек в трубопроводе.
- •Уровни и этапы автоматизации. Mes и erp системы.
- •Автоматизация нефтебаз. Регулятор давления без подвода дополнительной энергии. Устройства измерения уровня в резервуарах и одоризации продуктов
- •Принцип работы автозаправочной системы. Работа автоналивной системы типа асн-5.
- •Структура и принцип работы гидростатической системы измерения уровня типа « smart tank htg».
- •Протокол Modbus, структура asc II и rtu фреймов.
- •Протокол Modbus , режимы работы и основные функции.
- •Общая схема. Автоматизация процесса получения серы по способу Клауса.
- •Автоматизация теплообменников.
- •Автоматизация цтп ( центральных тепловых пунктов).
- •Автоматизация управления процессами в печах подогрева. Контроль работы и розжига.
- •Регулирование процессов в ректификационных колоннах.
- •Автоматизация процессов перемещения жидкостей и газов.
- •Типовая схема процесса перемещения жидкости.
- •Основные параметры трубопровода как объекта управления.
- •Для типовой схемы процесса перемещения жидкости.
- •Автоматизация процессов абсорбции.
- •Автоматизация промысловой подготовки нефти на упнг и газа на укпг и пхг.
- •Оптимальные системы управления. Критерии оптимальности.
- •Методы математического программирования
- •Обработка информации в асу тп. Связь интервала корреляции с частотой опроса первичных измерительных преобразователей.
- •2. Примеры решения задач первичной обработки данных.
- •2. Моделирование исполнительных устройств.
- •3. Законы регулирования.
- •Выбор частоты опроса первичных измерительных преобразователей по критерию максимального мгновенного отклонения
- •Выбор частоты опроса первичных измерительных преобразователей по критерию ско и по среднему значению сигнала.
- •Алгоритмы фильтрации измерительной информации. Статистически оптимальный фильтр.
- •Алгоритмы фильтрации измерительной информации. Экспоненциальный фильтр и фильтр скользящего среднего.
- •Типовая структура асу тп. Асу тп с удаленным плк.
- •Методы борьбы с компьютерными вирусами по гост р51188-98
- •Системы противоаварийной защиты(паз). Мажоритарная логика.
- •Асинхронная и синхронная связь в асу тп. Виды интерфейсов.
- •Интерфейс rs-232.Управление потоком данных.
- •Интерфейс rs-232.Назначение регистров.
- •Алгоритмы самонастройки регуляторов.
- •Принципы построения современных асу тп. Механизмы ole и opc.
- •Сетевая модель osi.
- •Основные принципы построения программных модулей и блоков в асу тп
- •Нарт- протокол
- •Основные понятия нечеткой логики. Нечеткий регулятор.
- •Виды полевых шин в асу тп
- •Raid-технология и odbc
- •Механизм com/dcom
- •Манчестерский код
- •Стек тср/ip.
- •1. Общие положения о спецификации орс.
- •2.1 Начальные настройки среды разработки
- •2.3 Функции добавления и удаления группы.
- •2.4 Служебная функция вызова идентификатора данных для сервера.
- •2.5 Функции добавления и удаления элемента из группы.
- •2.6 Использование класса орс для выборки и записи данных
- •2.7 Функции выборки и записи данных для помощи орс сервера.
- •Осуществление связи приложения с DeltaV по протоколу спецификации орс.
- •4. Осуществление связи приложения с Ifix по протоколу спецификации орс.
- •5.Итоги и рекомендации для дальнейшей разработки.
- •Нейронные сети.
- •Количество информации.
- •Изображение средств автоматизации на схемах( гост 21.404)
Нахождение кривой разгона. Методы обработки экспериментальных данных.
Методы расчета параметров настройки регуляторов.
Формульный метод расчета параметров настройки регуляторов.
Все аналитические (формульные) методы настройки регуляторов основаны на аппроксимации динамики объекта моделью первого или второго порядка с задержкой. Причиной этого является невозможность аналитического решения систем уравнений, которое необходимо при использовании моделей более высокого порядка. Поэтому в последние годы, в связи с появлением мощных контроллеров и персональных компьютеров, получили развитие и распространение численные методы оптимизации. Они являются гибким инструментом для оптимальной настройки параметров регулятора для моделей любой сложности и легко учитывают нелинейности объекта управления и требования к робастности.
Расчет параметров настройки регулятора методом затухающих колебаний и при наличии шумов.
Инвариантная стабилизация в двухтактной схеме вторичного электропитания.
Законы регулирования. Импульсные и непрерывные регуляторы.
В
системах автоматического регулирования
поддержание заданного значения
регулируемого параметра или изменение
его по определенному закону обеспечивается
аппаратурными средствами, имеющие
общее название – автоматические
регуляторы. По виду регулируемого
параметра автоматические регуляторы
подразделяются на регуляторы температуры,
давления, влажности, разряжения, расхода,
состава и т. п.
По
характеру изменения регулирующего
воздействия автоматические регуляторы
подразделяются на регуляторы с линейными
и нелинейными законами регулирования.
Примером
регуляторов с нелинейным законом
регулирования могут служить двухпозиционные
регуляторы температуры в холодильных
машинах. В трехпозиционных дискретных
системах выходной сигнал может принимать
три значения: –1, 0, +1, т.е. “меньше”,
“норма”, больше”. Качество работы
таких САР выше, хотя их надежность
ниже.
Регуляторы с линейным законом
регулирования по математической
зависимости между входными и выходными
сигналами подразделяются на следующие
основные виды:
пропорциональные
(П-регуляторы);
пропорционально-интегральные
(ПИ-регуляторы);
пропорционально-интегрально-дифференциальные (ПИД-регуляторы). В зависимости от вида используемой энергии регуляторы подразделяются на электрические (электромеханические, электронные), пневматические, гидравлические и комбинированные. Пневматические и гидравлические регуляторы, как правило, применяются во взрыво- и пожароопасных зонах. В зависимости от задающего воздействия и параметров объекта регулирования подбирают регулятор с определенной характеристикой Wр . Изменение Wр адекватно ведет к изменению коэффициентов дифференциального уравнения общего передаточного звена (регулятор-объект) и тем самым достигается необходимое качество регулирования. В промышленных регуляторах эти величины называются параметрами настройки. Параметрами настройки являются: коэффициент усиления, зона нечувствительности, постоянная времени интегрирования, постоянная времени дифференцирования и т. д. Для изменения параметров настройки в регуляторах имеются органы настройки (управления). Кроме органов настройки основных параметров, регуляторы имеют также органы настройки, косвенно влияющие на эти коэффициенты или режимы его работы, например, органы настройки, изменяющие чувствительность регулятора, демпфирование входного сигнала и др.
