
- •Управление и регулирование в нефтяной и газовой промышленности (нгп). Характеристики и особенности объектов управления и регулирования в нгп.
- •Классификация сар.
- •Статика и динамика систем. Линеаризация уравнений динамики.
- •Задачи синтеза сар. Характеристики переходных процессов, их виды.
- •5. Расчет параметров настройки регулятора методом расширенных афх
- •Расчет параметров настройки регулятора методом расширенных афх.
- •Регулирование объектов с запаздыванием. Понятие расширенного объекта.
- •Передаточная функция регулирующего клапана. Передаточные функции первичных преобразователей давления, расхода, уровня, температуры.
- •Расчет параметров настройки регулятора методом незатухающих колебаний.
- •Синтез многоконтурных сар. Задачи и пути реализации таких систем.
- •Каскадная система регулирования. Методика расчета.
- •Регулирование уровня с помощью каскадной сар. Методика расчета системы.
- •Системы несвязанного регулирования.
- •Системы автономного регулирования.
- •Системы регулирования объектов с запаздыванием. Регулятор Смита.
- •Инвариантные сар
- •Комбинированные инвариантные сар. Способы их реализации. Метод расчета параметров настройки компенсаторов. Комбинированная инвариантная система: 1 вариант.
- •Нахождение кривой разгона. Методы обработки экспериментальных данных.
- •Методы расчета параметров настройки регуляторов.
- •Формульный метод расчета параметров настройки регуляторов.
- •Расчет параметров настройки регулятора методом затухающих колебаний и при наличии шумов.
- •Инвариантная стабилизация в двухтактной схеме вторичного электропитания.
- •Законы регулирования. Импульсные и непрерывные регуляторы.
- •Настройка регуляторов опытным путем.
- •Порядок составления математического описания объектов регулирования.
- •Сепаратор газожидкостной смеси как объект управления. Его математическая модель.
- •4.2 Расчет оптимальных настроек регулятора
- •Теплообменник пар-жидкость как объект регулирования. Его математическая модель. Общая характеристика тепловых процессов Фазовое равновесие теплоносителей.
- •Фазовые переходы в однокомпонентных системах.
- •Фазовые переходы в многокомпонентных системах.
- •Связь основных параметров теплоносителей в газовой фазе.
- •Физические параметры и скорости движения теплоносителей.
- •Тепловая нагрузка аппарата.
- •Тепловые балансы теплоносителя при изменении его агрегатного состояния.
- •Основное уравнение теплопередачи.
- •Выражения для определения коэффициента к в зависимости от способа передачи тепла.
- •Движущая сила при прямотоке теплоносителей.
- •Движущая сила при противотоке теплоносителей.
- •Типовая схема автоматизации кожухотрубного теплообменника.
- •Типовое решение автоматизации.
- •(С изменяющимся агрегатным состоянием теплоносителя).
- •Математическое описание на основе физики процесса.
- •Информационная схема объекта.
- •Анализ динамических характеристик парожидкостного теплообменника как объекта управления температурой.
- •Анализ статической характеристики объекта.
- •Методы получения математического описания объектов регулирования. Построение математической модели емкости с жидкостью.
- •Автоматизация газо- и нефтеперекачивающих агрегатов. Работа газопровода совместно с кс (компрессорной станцией).
- •Асу тп газонефтепроводов. Критерии управления. Принципы управления и защиты от коррозии. Контроль утечек в трубопроводе.
- •Уровни и этапы автоматизации. Mes и erp системы.
- •Автоматизация нефтебаз. Регулятор давления без подвода дополнительной энергии. Устройства измерения уровня в резервуарах и одоризации продуктов
- •Принцип работы автозаправочной системы. Работа автоналивной системы типа асн-5.
- •Структура и принцип работы гидростатической системы измерения уровня типа « smart tank htg».
- •Протокол Modbus, структура asc II и rtu фреймов.
- •Протокол Modbus , режимы работы и основные функции.
- •Общая схема. Автоматизация процесса получения серы по способу Клауса.
- •Автоматизация теплообменников.
- •Автоматизация цтп ( центральных тепловых пунктов).
- •Автоматизация управления процессами в печах подогрева. Контроль работы и розжига.
- •Регулирование процессов в ректификационных колоннах.
- •Автоматизация процессов перемещения жидкостей и газов.
- •Типовая схема процесса перемещения жидкости.
- •Основные параметры трубопровода как объекта управления.
- •Для типовой схемы процесса перемещения жидкости.
- •Автоматизация процессов абсорбции.
- •Автоматизация промысловой подготовки нефти на упнг и газа на укпг и пхг.
- •Оптимальные системы управления. Критерии оптимальности.
- •Методы математического программирования
- •Обработка информации в асу тп. Связь интервала корреляции с частотой опроса первичных измерительных преобразователей.
- •2. Примеры решения задач первичной обработки данных.
- •2. Моделирование исполнительных устройств.
- •3. Законы регулирования.
- •Выбор частоты опроса первичных измерительных преобразователей по критерию максимального мгновенного отклонения
- •Выбор частоты опроса первичных измерительных преобразователей по критерию ско и по среднему значению сигнала.
- •Алгоритмы фильтрации измерительной информации. Статистически оптимальный фильтр.
- •Алгоритмы фильтрации измерительной информации. Экспоненциальный фильтр и фильтр скользящего среднего.
- •Типовая структура асу тп. Асу тп с удаленным плк.
- •Методы борьбы с компьютерными вирусами по гост р51188-98
- •Системы противоаварийной защиты(паз). Мажоритарная логика.
- •Асинхронная и синхронная связь в асу тп. Виды интерфейсов.
- •Интерфейс rs-232.Управление потоком данных.
- •Интерфейс rs-232.Назначение регистров.
- •Алгоритмы самонастройки регуляторов.
- •Принципы построения современных асу тп. Механизмы ole и opc.
- •Сетевая модель osi.
- •Основные принципы построения программных модулей и блоков в асу тп
- •Нарт- протокол
- •Основные понятия нечеткой логики. Нечеткий регулятор.
- •Виды полевых шин в асу тп
- •Raid-технология и odbc
- •Механизм com/dcom
- •Манчестерский код
- •Стек тср/ip.
- •1. Общие положения о спецификации орс.
- •2.1 Начальные настройки среды разработки
- •2.3 Функции добавления и удаления группы.
- •2.4 Служебная функция вызова идентификатора данных для сервера.
- •2.5 Функции добавления и удаления элемента из группы.
- •2.6 Использование класса орс для выборки и записи данных
- •2.7 Функции выборки и записи данных для помощи орс сервера.
- •Осуществление связи приложения с DeltaV по протоколу спецификации орс.
- •4. Осуществление связи приложения с Ifix по протоколу спецификации орс.
- •5.Итоги и рекомендации для дальнейшей разработки.
- •Нейронные сети.
- •Количество информации.
- •Изображение средств автоматизации на схемах( гост 21.404)
5. Расчет параметров настройки регулятора методом расширенных афх
1.
Строится семейство амплитудно-фазовых
характеристик разомкнутой системы при
и различных значениях
(5-6 значений).
2.
3адаются значением показателя
колебательности M, из
диапазона
(рекомендуется М=1.6). Из начала координат
проводят прямую OE под
углом
где
выбранное значение показателя
колебательности
3.
Строится семейство окружностей,
касающихся
и прямой OE под углом
,
причем центр окружностей все время
лежит на отрицательной действительной
оси. В результате построения определяются
радиусы этих окружностей
.
4.
Для каждой окружности вычисляют
предельное значение
5.
По значениям
и
строят границу области заданного
показателя колебательности.
6.
На этой границе определяют точку, для
которой отношение
максимально.
Построение
АФХ разомкнутой системы для различных
значений
подробно описано в книге Ротача В.Я.
Профессором
Ротачем В.Я. также была разработана
упрощенная методика настройки
ПИ-регулятора по одной точке АФХ
разомкнутой системы. В основу методики
положен следующий факт. В результате
экспериментов и численных расчетов
было установлено, что для различных
типов объектов управления при оптимально
настроенном ПИ-регуляторе АФХ разомкнутых
систем проходят приблизительно через
одну точку с амплитудой
, фазой
и частотой
Расчет параметров настройки регулятора методом расширенных афх.
Существует специальная аппаратура для экспериментального определения амплитуднофазовой характеристики (АФХ) объекта управления: Эту характеристику можно использовать для расчета настроек ПИ-регулятора, гд главным критерием является обеспечение заданных запасов устойчивости в системе.
Запасы устойчивости удобно характеризовать показателем колебательности системы M, величина которого в системе с ПИ-регулятором совпадает с максимумом амплитудно-частотной характеристики замкнутой системы. Для того чтобы этот максимум не превышал заданной величины, АФХ разомкнутой системы не должна заходить внутрь окружности с центром P 0 и радиусом R, где
Можно
доказать, что оптимальными по минимуму
среднеквадратичной ошибки регулирования
настройками будут такие, при которых
система с показателем колебательности
M
M
1 будет иметь наибольший коэффициент
при интегральной составляющей, чему
соответствует условие K p /T i
>min.
В связи с этим расчет оптимальных настроек состоит из двух этапов:
Нахождение в плоскости параметров K p и T i , границы области, в которой система обладает заданным показателем колебательности M 1 .
Определением на границе области точки, удовлетворяющей требованию K p /T i .
Расчёт настроек по частотным характеристикам объекта. Методика расчёта настроек ПИ регулятора по АФХ объекта
Строится семейство амплитудно-фазовых характеристик разомкнутой системы при K p =1 и различных значениях T ij (5 –6 значений).
Задаются
значения показателя колебательности
M из диапазона 1,55
M
2,3 (рекомендуется М=1,6). Из начала координат
проводят прямую OE под углом
=arcsin(1/M 1 ), где M 1 — выбранное
значение показателя колебательности.
Строится семейство окружностей, касающихся АФХ oj и прямой OE под углом , причем центр окружностей все время лежит на отрицательной действительной оси. В результате построения определяются радиусы этих окружностей R j .
Для каждой окружности вычисляют предельное значение K p
По значениям K pj и K ij строят границу области заданного показателя колебательности.
На этой границе определяют точку, для которой отношение K p /T i максимально.