- •Выбросы автомобильного транспорта как источник загрязнения окружающей среды (обзор литературы)
- •1.1.Характеристики и особенности образования выбросов автотранспорта
- •1.2. Факторы, влияющие на распространение выбросов автотранспорта
- •Механизмы трансформации выбросов автотранспорта
- •1.4. Влияние выбросов автотранспорта на окружающую среду
- •1.5. Влияние компонентов ог двс на придорожные участки
- •1.6. Влияние компонентов ог двс на здоровье человека
- •2. Экспериментальная часть
- •2.1. Место проведения исследования
- •2.1.2. Агроэкологическая характеристика хозяйства
- •2.1.3 Характеристика хозяйственной деятельности предприятия
- •2.2. Методики проведения исследования
- •3. Результаты исследований и их обсуждение
- •3.1. Влияние ветра на распространение ог двс
- •3.2. Характеристика интенсивности движения автомобильного транспорта автодороги м- 7 «Волга»
- •3.3. Характеристика выбросов автомобильного транспорта
- •3.4. Агрохимический анализ исследуемых почв
- •3.5. Изучение фитотоксичности почвенных образцов придорожных участков
- •3.6. Результаты исследований талых вод придорожных участков
- •3.7.Определение фитотоксичности талых вод
- •4. Расчет ущерба от изъятия полосы отвода автомобильной дороги м – 7 «Волга» из сельскохозяйственного производства
Механизмы трансформации выбросов автотранспорта
в окружающей среде
В. И. Артамоновым (1968) была выявлена роль растений в детоксикации вредных загрязнителей окружающей среды. Способность растений очищать атмосферу от вредных примесей определяется прежде всего тем, насколько интенсивно они их поглощают. В.И. Артамонов (1968) предполагает, что опушенность листьев растений, с одной стороны, способствует удалению пыли из атмосферы, а с другой стороны - тормозит поглощение газов.
Растения осуществляют детоксикацию вредных веществ различными способами. Некоторые из них связываются цитоплазмой растительных клеток и становятся благодаря этому неактивными. Другие подвергаются превращениям в растениях до нетоксических продуктов, которые иногда включаются в метаболизм растительных клеток и используются для нужд растений. Обнаруживается также, что корневые системы растений выделяют некоторые вредные вещества, поглощенные надземной частью растений, например серосодержащие соединения.
В. И. Артамонов (1968) отмечает важнейшее значение зеленых растений, которое заключается в том, что они осуществляют процесс утилизации углекислого газа. Это происходит благодаря физиологическому процессу, свойственный только автотрофным организмам - фотосинтезу. О масштабах этого процесса свидетельствует тот факт, что за год растения связывают в форме органических веществ около 6-7% углекислого газа содержащегося в атмосфере Земли.
Некоторые растения отличаются высокой газопоглотительной способность и одновременно являются устойчивыми к сернистому газу. Движущей силой поглощения двуокиси серы является диффузия молекул через устьица. Чем сильнее опушены листья, тем меньше они поглощают сернистого газа. Поступление этого фитотоксиканта зависит от влажности воздуха и насыщенности листьев водой. Если листья увлажнены, то они поглощают сернистый газ в несколько раз быстрее по сравнению с сухими листьями. Влажность воздуха также оказывает влияние на этот процесс. При относительной влажности воздуха 75% растения фасоли поглощали сернистый газ в 2-3 раза интенсивнее, чем растения произрастающие при влажности 35 %. Кроме того, скорость поглощения зависит от освещения. На свету листья вяза поглощали серу на 1/3 быстрее, чем в темноте. Поглощение сернистого газа имеет связь с температурой: при температуре 32° растения фасоли более интенсивно поглощали этот газ по сравнению с температурой 13°.
Поглощенная листьями двуокись серы окисляется до сульфатов, благодаря чему токсичность ее резко снижается. Сульфатная сера включается в обменные реакции, протекающие в листьях, частично может накапливаться в растениях без возникновения функциональных нарушений. Если скорость поступления двуокиси серы соответствует скорости превращения ее растениями, влияние этого соединения на них не велико. Корневая система растений может выводить соединения серы в почву.
Двуокись азота может поглощаться корнями и зелеными побегами растений. Усвоение и превращение NO2 листьями растением происходит с высокой скоростью. Восстановленный листьями и корнями азот включается затем в аминокислоты. Другие окислы азота легко растворяются в воде, содержащийся в воздухе, а затем усваиваются растениями.
Листья некоторых растений способны усваивать угарный газ. Усвоение и превращение его происходит как на свету, так и в темноте, однако на свету эти процессы осуществляются значительно быстрее. В результате первичного окисления из окиси углерода образуется углекислый газ, который потребляется растениями в ходе фотосинтеза.
Высшие растения участвуют в детоксикации бенз(а)пирена и альдегидов. Они усваивают бенз(а)пирен корнями и листьями, превращая его в различные соединения с открытой цепью. А альдегиды претерпевают в них химические превращения, в результате которых углерод этих соединений включаются в состав органических кислот и аминокислот.
Моря и океаны также играют огромную роль в связывании углекислого газа из атмосферы. В.И.Артамонов (1968) в своей работе описывает каким образом происходит этот процесс: газы лучше растворяются в холодной воде, чем в теплой. По этой причине углекислый газ интенсивно поглощается в холодных областях, и осаждается в виде карбонатов.
Особое внимание В.И.Артамонов (1968) уделял роли почвенных бактерий в детоксикации угарного газа и бенз(а)пирена. Наибольшую СО-связывающую активность проявляют богатые органикой почвы. Активность почвы возрастает с повышением температуры, достигая максимума при 30°. Температура выше 40° способствует выделению СО. Микроорганизмы почвы разрушают бенз(а)пирен и превращают его в различные химические соединения.
