
- •Мехатронные и робототехнические системы
- •Введение
- •Глава 1. Предпосылки развития, основные понятия и принципы построения мехатронных устройств
- •Предпосылки развития мехатроники
- •Основные понятия и определения мехатроники
- •Принципы построения, признаки и состав мехатронных систем
- •Глава 2. Применение мехатронных машин
- •2.1. Мобильные мехатронные роботы для инспекции и ремонта подземных трубопроводов
- •2.2. Лазерный робототехнический комплекс
- •2.3. Робототехнический комплекс механообработки
- •2.4. Технологические машины – гексаподы
- •2.5. Транспортные мехатронные средства
- •Глава 3. Структура и принципы интеграции мехатронных систем
- •Глава 4. Проблемы и современные методы управления мехатронными модулями и системами
- •4.1. Принципы построения систем интеллектуального управления в мехатронике
- •4.2. Иерархия управления в мехатронных системах
- •4.3. Системы управления исполнительного уровня
- •4.3.1. Адаптивное регулирование по эталонной модели
- •4.3.2. Нечеткие регуляторы исполнительного уровня
- •4.3.3. Системы управления тактического уровня. Система контурного силового управления технологическим роботом
- •4.3.4. Способы программирования траекторий технологических роботов
- •4.3.5. Интеллектуальные системы управления на основе искусственных нейронных сетей
- •Глава 5. Области применения роботов и робототехнических систем. Классификация промышленных роботов и их технические характеристики
- •5.1. Классификация роботов
- •5.2. Техническая характеристика пр (гост 25378 - 82)
- •Глава 6. Структура, классификация и основы кинематики манипуляционных систем промышленных роботов
- •6.1. Структура манипуляторов промышленных роботов
- •6.2. Переносные и ориентирующие степени подвижности манипулятора
- •6.3. Основы кинематики манипуляторов роботов
- •Положение I-го звена относительно предыдущего (I-1)-го устанавливается с помощью обобщенной координаты qi (рис. 6.6):
- •6.4. Однородные координаты. Матрица перехода 4×4 кинематической пары
- •6.5. Определение ориентации звеньев манипуляторов с использованием углов Эйлера
- •Глава 7. Прямая задача кинематики манипуляторов роботов. Абсолютные скорости и ускорения в манипуляционных системах промышленных роботов
- •7.1. Теоретические вопросы решения прямой задачи
- •7.2. Решение прямой задачи кинематики манипуляторов при позиционном (цикловом) управлении
- •7.3. Определение абсолютных скоростей и ускорений точек и звеньев манипулятора
- •Глава 8. Обратная задача кинематики манипуляторов роботов
- •8.1. Обратная задача кинематики манипуляторов роботов при контурном управлении
- •8.2. Решение обратной задачи кинематики манипуляторов на основе линейной зависимости между абсолютными и обобщенными скоростями (управление по скорости)
- •Глава 9. Динамический синтез и анализ манипуляционных систем промышленных роботов
- •Глава 10. Назначение, состав и классификация робототехнических комплексов
- •10.1. Назначение робототехнических комплексов
- •10.2. Состав и классификация робототехнических комплексов
- •Глава 11. Траектории манипуляторов роботов в составе робототехнических комплексов
- •Компоновка ртк и возможные траектории схвата манипулятора
- •11.2. Анализ местных (частных) траекторий манипулятора
- •11.3. Особенности использования нескольких пр в одном ртк
- •11.4. Межстаночные траектории как функции числа схватов и организации производственной сцены
- •Глава 12. Планирование траекторий схвата манипулятора на основе сплайн – функций
- •12.1. Планирование траекторий при ограниченном числе
- •Опорных точек
- •12.2. Общие случаи планирования траекторий в пространстве обобщенных координат
- •Глава 13. Применение робототизированных технологических комплексов в механообрабатывающем производстве
- •13.1. Требования к технологическим процессам, реализуемым в ртк
- •13.2. Требования к деталям, обрабатываемым в ртк
- •13.3. Требования к технологическому оборудованию, используемому в ртк
- •13.4. Требования к промышленным роботам, включаемым в состав ртк
- •13.5. Требования к вспомогательному и транспортно-накопительному оборудованию, включаемому в ртк
- •13.6. Требования к ртк
- •13.7. Общие характеристики и особенности ртк механообработки
- •Библиографический список
- •Оглавление
2.4. Технологические машины – гексаподы
Мехатронный подход положен в основу машин с концептуально новым принципом построения – так называемых гексаподов. Эти технологические машины (станки, координатно-измерительные машины, роботы) имеют стержневую конструкцию и построены на мехатронных модулях линейного движения, в основе их конструктивной схемы лежит платформа Стюарта.
Станок-гексапод (рис. 2.4а) выполнен на базе линейных мехатронных модулей 2, которые осуществляют осевое перемещение винтов через шарико-винтовые передачи (ШВП). Один конец ШВП соединен безлюфтовым шарниром с нижней платформой 1, а другой – с подвижной верхней платформой 4, на которой расположен рабочий орган – инструментальная головка 3. Управляя положением винтов (рис. 2.4б), можно обеспечить пространственное перемещение рабочего органа по шести степеням свободы (отсюда и название станка: «гекса» – означает «шесть» по-гречески). Основными преимуществами гексаподных машин являются:
сокращение времени подготовки производства и повышение его рентабельности за счет объединения обрабатывающих, разметочных и измерительных функций в единой мехатронной системе;
высокая точность измерений и обработки, которая обеспечивается повышенной жесткостью стержневых механизмов (до 5 раз), применением прецизионных датчиков обратной связи и лазерных измерительных систем, использованием компьютерных методов коррекции (например, тепловых воздействий);
повышенная скорость движений (скорость быстрых перемещений достигает 10 м/с, рабочих движений – до 2,5 м/с);
отсутствие направляющих (в качестве несущих элементов конструкции используются приводные механизмы), отсюда улучшенные массогабаритные характеристики и материалоемкость;
высокая степень унификации мехатронных узлов, обеспечивающая технологичность изготовления и сборки машины и конструктивную гибкость;
высокое качество управления движением благодаря малой инерционности механизмов, применению линейных мехатронных модулей движения как объектов управления, использованию методов автоматизированной подготовки и исполнения в реальном времени управляющих программ, наличию дружелюбного интерфейса «человек-машина».
а)
б)
Рис. 2.4. Общий вид станка-гексапода (а) и его конфигурации (б)
Примером отечественной технологической машины-гексапода является прецизионное оборудование, предлагаемое АО «ЛАПИК» (г. Саратов). Фирма выпускает на единой конструктивной базе гексаподы двух типов: координатно-измерительные машины (КИМ) и технологические модули (ТМ) для механообработки (рис. 2.5).
Рис. 2.5. Общий вид технологической машины-гексапода
Технологические модули предназначены для фасонной обработки с высокой точностью изделий методами фрезерования, шлифования, сверления, полирования, а также для выполнения операций гравировки, растачивания, разметки. Рабочая зона гексаподов-ТМ варьируется у различных моделей в диапазонах: по оси X – от 500 мм до 3000 мм, по оси Y – от 400 мм до 1400 мм, по оси Z – от 350 мм до 750 мм. Максимальный угол поворота подвижной платформы относительно каждой из осей составляет в серийных моделях 30 град, скорость ее движения управляется программно в интервале 0,01–120 мм/с.
Гексаподы имеют весьма эффективные массогабаритные показатели по сравнению со станками традиционной компоновки. Так, ТМ-500 при габаритах 1800x1550x2300 мм имеет массу 2800 кг, а наиболее мощный ТМ-3000 имеет габариты 5000x3500x3800 мм при массе 6500 кг. На ТМ устанавливаются мехатронные модули типа «мотор-шпиндель» мощностью от 1,5 кВт до 5 кВт с регулируемой частотой вращения в диапазонах 200–12000 об/мин, либо 600–24000 об/мин.
Контрольно-измерительные машины выполняют автоматические измерения и контроль размеров деталей (в том числе легкодеформируемых изделий) от конструкторских или технологических баз. Погрешности измерений для КИМ-500 (машина базового исполнения) не превышают 0,8 мм (линейные измерения, размер L = 300 мм) и 1,5 мм для пространственных измерений (L = 250 мм). В машинах специального прецизионного исполнения эти показатели достигают соответственно 0,3 мм и 0,5 мм (при размерах L = 500 мм). Измерения выполняются с помощью специальной головки-щупа, оснащенной датчиками механического или токового касания. Контактное усилие при токовом касании не превышает 0,0003 Н, что позволяет измерять податливые и мелкоструктурные детали.
Дальнейшее развитие технологических машин-гексаподов связано с применением интеллектуальных линейных мехатронных модулей, а также с созданием эффективного математического и программного обеспечения для решения задач планирования и управления их движением в реальном времени.