
- •Мехатронные и робототехнические системы
- •Введение
- •Глава 1. Предпосылки развития, основные понятия и принципы построения мехатронных устройств
- •Предпосылки развития мехатроники
- •Основные понятия и определения мехатроники
- •Принципы построения, признаки и состав мехатронных систем
- •Глава 2. Применение мехатронных машин
- •2.1. Мобильные мехатронные роботы для инспекции и ремонта подземных трубопроводов
- •2.2. Лазерный робототехнический комплекс
- •2.3. Робототехнический комплекс механообработки
- •2.4. Технологические машины – гексаподы
- •2.5. Транспортные мехатронные средства
- •Глава 3. Структура и принципы интеграции мехатронных систем
- •Глава 4. Проблемы и современные методы управления мехатронными модулями и системами
- •4.1. Принципы построения систем интеллектуального управления в мехатронике
- •4.2. Иерархия управления в мехатронных системах
- •4.3. Системы управления исполнительного уровня
- •4.3.1. Адаптивное регулирование по эталонной модели
- •4.3.2. Нечеткие регуляторы исполнительного уровня
- •4.3.3. Системы управления тактического уровня. Система контурного силового управления технологическим роботом
- •4.3.4. Способы программирования траекторий технологических роботов
- •4.3.5. Интеллектуальные системы управления на основе искусственных нейронных сетей
- •Глава 5. Области применения роботов и робототехнических систем. Классификация промышленных роботов и их технические характеристики
- •5.1. Классификация роботов
- •5.2. Техническая характеристика пр (гост 25378 - 82)
- •Глава 6. Структура, классификация и основы кинематики манипуляционных систем промышленных роботов
- •6.1. Структура манипуляторов промышленных роботов
- •6.2. Переносные и ориентирующие степени подвижности манипулятора
- •6.3. Основы кинематики манипуляторов роботов
- •Положение I-го звена относительно предыдущего (I-1)-го устанавливается с помощью обобщенной координаты qi (рис. 6.6):
- •6.4. Однородные координаты. Матрица перехода 4×4 кинематической пары
- •6.5. Определение ориентации звеньев манипуляторов с использованием углов Эйлера
- •Глава 7. Прямая задача кинематики манипуляторов роботов. Абсолютные скорости и ускорения в манипуляционных системах промышленных роботов
- •7.1. Теоретические вопросы решения прямой задачи
- •7.2. Решение прямой задачи кинематики манипуляторов при позиционном (цикловом) управлении
- •7.3. Определение абсолютных скоростей и ускорений точек и звеньев манипулятора
- •Глава 8. Обратная задача кинематики манипуляторов роботов
- •8.1. Обратная задача кинематики манипуляторов роботов при контурном управлении
- •8.2. Решение обратной задачи кинематики манипуляторов на основе линейной зависимости между абсолютными и обобщенными скоростями (управление по скорости)
- •Глава 9. Динамический синтез и анализ манипуляционных систем промышленных роботов
- •Глава 10. Назначение, состав и классификация робототехнических комплексов
- •10.1. Назначение робототехнических комплексов
- •10.2. Состав и классификация робототехнических комплексов
- •Глава 11. Траектории манипуляторов роботов в составе робототехнических комплексов
- •Компоновка ртк и возможные траектории схвата манипулятора
- •11.2. Анализ местных (частных) траекторий манипулятора
- •11.3. Особенности использования нескольких пр в одном ртк
- •11.4. Межстаночные траектории как функции числа схватов и организации производственной сцены
- •Глава 12. Планирование траекторий схвата манипулятора на основе сплайн – функций
- •12.1. Планирование траекторий при ограниченном числе
- •Опорных точек
- •12.2. Общие случаи планирования траекторий в пространстве обобщенных координат
- •Глава 13. Применение робототизированных технологических комплексов в механообрабатывающем производстве
- •13.1. Требования к технологическим процессам, реализуемым в ртк
- •13.2. Требования к деталям, обрабатываемым в ртк
- •13.3. Требования к технологическому оборудованию, используемому в ртк
- •13.4. Требования к промышленным роботам, включаемым в состав ртк
- •13.5. Требования к вспомогательному и транспортно-накопительному оборудованию, включаемому в ртк
- •13.6. Требования к ртк
- •13.7. Общие характеристики и особенности ртк механообработки
- •Библиографический список
- •Оглавление
4.3.4. Способы программирования траекторий технологических роботов
Рассмотрим способы и особенности программирования траектории технологических роботов на примере РТК механообработки.
Выбор декартовой системы координат для задания траектории предопределен тем, что во всех рассмотренных технологических операциях необходимо управлять движением непосредственно рабочего органа относительно объекта работ.
Применяются следующие основные способы программирования траектории:
обучение робота человеком-оператором с помощью дистанционного пульта;
автоматизированная подготовка программы на внешнем компьютере с использованием средств САПР и последующей ее загрузкой в систему управления робота;
метод «самообучения» робота.
Примером современного дистанционного пульта может служить пульт управления «KUKA Control Panel», которым оснащаются технологические роботы АО АВТОВАЗ.
Пульт изготовлен с учетом эргономических требований и выполняет функции интерфейса «человек – машина» в режимах обучения и управления движением. Пульт имеет 8-дюймовый дисплей, пленочную клавиатуру, мышь 6D для управления по шести координатам, кнопки аварийного отключения, включения/выключения приводов, переключатель режимов работы и выключатели разрешения. С помощью стандартного штекера к пульту можно дополнительно подключить клавиатуру персонального компьютера. Микроконтроллер отправляет клавиатурные данные по стандартной шине в персональный компьютер, дисплейная информация передается через высокоскоростной последовательный интерфейс.
Метод «самообучения» предполагает предварительное прохождение инструментом детали-эталона, когда координаты точек траектории автоматически вводятся в память компьютера. Запись точки производится при касании инструмента, который выполняет роль щупа базовой поверхности детали. По сути, робот работает в этом варианте как координатно-измерительная машина. Компьютер обрабатывает массив полученных точек и формирует необходимое и достаточное количество опорных точек траектории. Координаты опорных точек передаются по специальному интерфейсу из компьютера в систему управления робота.
При автоматизированном программировании пространственных траекторий одним из часто используемых графических форматов является формат, в котором содержится описание последовательности и декартовых координат опорных точек, но при этом нет описания графических примитивов (линия, окружность, сплайн). Основным недостатком данного подхода является использование линейной интерполяции для выполнения движения между точками, что неприемлемо для мехатронных систем при высоких требованиях к точности движения. Для систем этого класса следует использовать формат, содержащий графические примитивы и осуществлять интеллектуальную сегментацию траектории, заданной простым текстовым форматом. Для проведения интеллектуальной сегментации траектории движения с целью интерполяции ее графическими примитивами используется нечеткий интерполяционный фильтр. Основным геометрическим примитивом для проводимой интерполяции является кубический сплайн, а частными его случаями является прямая линия и окружность.