- •А.Ш. Зайчик, л.П. Чурилов
- •Аннотация.
- •Предисловие от авторов
- •Введение.
- •Глава 1. Патологическая физиология как наука.
- •О методах патологической физиологии
- •Предмет патологической физиологии.
- •Глава 2. Здоровье и болезнь.
- •Здоровье как общемедицинская категория
- •Естественная история болезни
- •Проблема соотношения повреждения и защиты в патологии.
- •Глава 3. Общая этиология и общий патогенез.
- •Болезнь как мозаичное явление. Составные фрагменты болезней.
- •История этиологических концепций и синтетический подход в общей этиологии.
- •О монокаузализме
- •О кондиционализме.
- •Существуют ли полиэтиологические болезни?
- •Причина как процесс. Причинный фактор - часть причины.
- •Глава 4. Реактивность организма и ее роль в возникновении, развитии и исходе болезней.
- •Реактивность и резистентность.
- •История учения о реактивности.
- •Субстрат реактивности и эволюция ее интегративных механизмов.
- •Виды реактивности.
- •Влияние пола на реактивность.
- •Влияние возраста на реактивность.
- •Условия обитания и реактивность.
- •Глава 5. Конституция организма как важнейшая форма групповой реактивности.
- •Конституциональные типы : история описания, различия и механизмы формирования .
- •Глава 6. Маркеры конституции и соматическая патология.
- •Диатезы.
- •Глава 7. Информационные аспекты проблемы повреждения клетки.
- •Патология сигнализации.
- •Нарушения рецепции сигналов.
- •Нарушения функционирования пострецепторных посреднико- вых механизмов.
- •Дефекты клеточных программ, как основа патологических процессов
- •Общий патогенез наследственных заболеваний.
- •Глава 8. Повреждение исполнительного аппарата клетки.
- •Патохимические последствия повреждения клеточного ядра.
- •Белки теплового шока.
- •Немедленные гены предранней реакции.
- •Антионкогены.
- •Белок третьей полосы (антиген стареющих клеток).
- •Последствия повреждения органоидов.
- •Повреждение плазмолеммы .
- •Повреждение цитоскелета.
- •Последствия повреждения внутриклеточных мембран.
- •Повреждение пластинчатого комплекса.
- •Повреждение лизосом и пероксисом.
- •Повреждение митохондрий.
- •Глава 9. Интегральные механизмы гибели и повреждения клетки.
- •Механизмы гипоксического некробиоза.
- •Механизмы свободно-радикального некробиоза.
- •Антиоксидантные механизмы клеток.
- •Механизмы апоптоза.
- •Глава 10. Микроциркуляторное русло.
- •Регуляция микроциркуляторного кровотока.
- •Обмен жидкостью между кровью и тканями и местные отёки.
- •Глава 11. Типовые нарушения периферического кровообращения.
- •Гиперемия.
- •Артериальная гиперемия.
- •Венозная гиперемия.
- •Смешанная гиперемия.
- •Ишемия.
- •Последствия и исходы ишемии. Инфаркт.
- •Стаз и его патогенез.
- •Кровотечение.
- •Тромбоз.
- •Сосудистый гемостаз и его нарушения.
- •Сосудистый антигемостаз и его нарушения.
- •Клеточное звено гемостаза и антигемостаза.
- •Нарушения гемостатических и антигемостатических механизмов плазмы.
- •Диссеминированное внутрисосудистое свёртывание.
- •Эмболия.
- •Глава 12. Патофизиология воспаления.
- •Значение воспаления и его этиология
- •Теории воспаления.
- •Автономия воспалительного очага, аутохтонность и барьерные функции воспаления.
- •Патогенез альтерации.
- •Вторичная альтерация.
- •Сосудистая реакция при воспалении.
- •Патогенез экссудации и виды экссудатов.
- •Проницаемость сосудов при воспалении.
- •Краевое стояние и эмиграция лейкоцитов.
- •Механизмы маргинации и диапедеза - роль взаимодействия лейкоцитов и эндотелия. Молекулы клеточной адгезии.
- •Фагоцитоз: его участники и неоднозначные последствия.
- •Стадии фагоцитоза, их механизмы и расстройства
- •Патогенез пролиферации: противовоспалительные механизмы.
- •Регуляторы регенерации и фиброплазии.
- •Воссоздание ткани при регенерации и фиброплазии.
- •Медиаторы воспаления.
- •Биогенные амины.
- •Полипептидные медиаторы.
- •Система комплемента.
- •Кининовая система и нейропептиды.
- •Липидные медиаторы.
- •Полисахаридные медиаторы.
- •Особенности хронического воспаления.
- •Глава 13. Преиммунный ответ и продромальный синдром15.
- •Механизмы лихорадки.
- •Глава 14. Иммунный ответ.
- •Основные участники иммунологических взаимодействий.
- •Лимфоидные органы и ткани.
- •Антигены и их распознавание в иммунной системе.
- •Цитокины и белки гкгс - факторы коммуникации иммунной системы.
- •Теория клональной селекции происхождения и развития иммунных клеток.
- •Идентификация лимфоидных и нелимфоидных клеток
- •Иммуноглобулины как маркеры и распознающие молекулы.
- •Биология т-лимфоцитов.
- •Биология в-лимфоцитов и плазматических клеток.
- •Регуляция иммунного ответа.
- •Иммунная защита от инфекционных агентов и её издержки.
- •Глава 15. Аллергия или гиперчувствительность.
- •Классификация аллергических реакций.
- •Патогенез аллергии.
- •Этиология аллергических заболеваний.
- •Гиперчувствительность немедленного типа.
- •Анафилаксия.
- •Генетические основы предрасположенности к анафиликсии.
- •Иммуноглобулины е и их рецепторы.
- •Мастоциты и их гетерогенность.
- •Дегрануляция клеток, сенсибилизированных реагинами
- •Патохимическая стадия анафилаксии. Ранняя реакция.
- •Поздняя фаза анафилаксии и ее механизмы.
- •Разнообразие анафилактических реакций.
- •Анафилaксия как результат несовершеной защиты.
- •Цитотоксические реакции.
- •Разнообразие деструктивных цитотоксических реакций.
- •Аутоиммунные гемоцитопении и иные аутоиммунные гематологические расстройства.
- •Цитотоксические реакции при органоспецифических аутоиммунных заболеваниях
- •Недеструктивные последствия взаимодействия клеток со специфическими антителами.
- •Иммунокомплексные реакции (Реакции III типа)
- •Аллергические васкулиты и их разнообразие.
- •Иммунокомплексные Артюс-подобные реакции.
- •Гиперчувствительность замедленного типа (гзт).
- •Гиперчувствительность туберкулинового типа.
- •Гранулёматозная гиперчувствительность.
- •Реакции отторжения трансплантата ("реципиент против трансплантата").
- •Аутоиммунные реакции гзт.
- •Глава 16. Аутоиммунитет и аутоаллергия.
- •Физиологический аутоиммунитет и относительность аутотолерантности.
- •Аутоаллергия и нарушение аутотолерантности.
- •Генетическая предрасположенность к аутоаллергии.
- •Механизмы аутоаллергии.
- •Аутоаллергия и проблема забарьерных антигенов: переоценка ситуации.
- •Дефицит супрессии.
- •Аномальная экспрессия антигенов гкгс II класса.
- •Прямая активация аутореактивных т-хелперов.
- •Поликлональная иммуностимуляция эффекторов.
- •Обход механизмов аутотолерантности (перекрестная реактивность и молекулярная мимикрия).
- •Глава 17. Иммунодефициты.
- •Первичные иммунодефициты с преобладанием нарушений антителогенеза.
- •Первичные т-клеточные иммунодефициты.
- •Смешанные первичные иммунодефициты.
- •Вторичная иммунологическая недостаточность.
- •Глава 18. Стресс: интегральный неспецифический нейроэндокринный ответ.
- •История учения о стрессе.
- •Гипоталамо-гипофизарная система.
- •Гипоталамус и его роль при стрессе.
- •Гипофиз и его роль при стрессе.
- •Надпочечники, как основной эффектор стресса.
- •Механизмы адаптогенного действия глюкокортикоидов и катехоламинов при стрессе.
- •Проблема физиологического выхода из стресса и эндогенные опиоиды.
- •Стресс и болезни адаптации.
- •Онтогенетические аспекты стресса.
- •Боль и ее роль.
- •Болевые рецепторы.
- •Проведение боли в цнс.
- •Ауторегуляция боли и эндогенная анальгетическая система.
- •Заключение.
- •Примечания
- •Глава 9. Интегральные механизмы гибели и повреждения клетки. 167
- •Глава 10. Микроциркуляторное русло. 188
- •Глава 11. Типовые нарушения периферического кровообращения. 203
- •Глава 12. Патофизиология воспаления. 259
- •Глава 13. Преиммунный ответ и продромальный синдром. 353
- •Глава 14. Иммунный ответ. 379
- •Глава 15. Аллергия или гиперчувствительность. 420
- •Глава 16. Аутоиммунитет и аутоаллергия. 466
- •Глава 17. Иммунодефициты. 481
- •Глава 18. Стресс: интегральный неспецифический нейроэндокринный ответ. 496
Надпочечники, как основной эффектор стресса.
Парные надпочечные железы представляют собой уникальный гормонообразующий комплекс, в котором слиты в функциональном единстве корковое вещество, имеющее мезодермальное происхождение и мозговое вещество, дериват эктодермы нервного гребня.
У низших позвоночных эти образования разлучены в организме. Корковое вещество представлено интерреналовой тканью, а мозговое - параганглиями. Параганглии, как скопления хромаффинных клеток, принадлежащих к АПУД-системе, обнаруживаются и у человека. Но только у высших позвоночных, в частности, у птиц и млекопитающих, происходит анатомическое сближение этих тканей. У птиц они перемешаны в виде тяжей клеток в общем органе. У млекопитающих один из параганглиев -paraganglion suprarenale - оказывается внутри футляра из коркового вещества. Причиной этого, безусловно, послужило давление отбора в пользу анатомического сближения органов, тесно взаимодействующих при интегральном ответе организма на стрессоры. Как следствие былой филогенетической обособленности интерреналовой ткани, у млекопитающих встречаются её скопления, анатомически локализованные вне надпочечника и способные обеспечивать эктопическую секрецию кортикостероидов.
Парные надпочечники можно уподобить неким “цилиндрам” стрессорного двигателя. Аналогия не так произвольна, как может показаться на первый взгляд. Дж. Бэкстер еще в 1948 г. установил, что левый и правый надпочечники функционируют асинхронно. Им было, в частности, показано, что максимумы митотической активности адренокортикоцитов в левом и правом надпочечниках находятся в противофазах. Учитывая это, можно полагать, что и секреторная деятельность этих органов неодновременна, так как в большинстве эндокринных органов, как это показано М. Павликовски (1982), максимумы пролиферативной активности совпадают с минимумами секреторной.
Своеобразная морфология надпочечников, которые окружены с поверхности соединительнотканной капсулой и содержат в корковом веществе три концентрические зоны - клубочковую (составляющую 10-15% толщины коры и наиболее митотически активную), пучковую (простирающуюся на 80% толщины коры) и сетчатую (на долю которой приходятся центрипетальные 5-10% толщины коры и наибольшее количество апоптотических телец) - издавна давала почву для необычных предположений, касающихся онтогенеза и гистофизиологии этих эндокринных желёз.
Одна из самых оригинальных гипотез постулирует, что , в отличие от других органов, надпочечники растут внутрь. Эта идея относится к классическим и предложена еще в 19-м веке А. Готтшо и А. Достоевским (1883). Согласно данным представлениям, в дальнейшем отстаивавшимся В.Цвемером и соавторами (1938) как “эскалаторная теория”, бластема или камбиальный слой надпочечника находится под капсулой. Её фибробласты всё время трансформируются и дают начало новым адренокортикоцитам. Размножаясь, клетки коркового вещества оттесняются к центру, приобретают под влиянием различных регуляторов новые дифференцировочные свойства и переходят в клетки клубочковой, пучковой, а затем - и сетчатой зон, соответствующим образом изменяя свои биосинтетические потенции. В конечном итоге они, согласно изначальному варианту эскалаторной теории, дегенерируют во внутренней части zona reticularis. Позже Е.В. Строганова и А.К. Носов показали, что недифференцированные клетки капсулы могут участвовать в образовании истинных аденом коры надпочечника, приобретая стероидогенные потенции (1962).
Авторадиографические исследования Ж. Бертоле (1980) проследившего центрипетальную миграцию адренокортикоцитов, и, особенно, интереснейшие опыты Д.Тёрлея (1982), получившего in vitro из фибробластов капсулы надпочечника истинные стероидопродуцирующие клетки под влиянием больших доз АКТГ, неожиданно подтвердили приоритет одной из старейших теорий гистогенеза надпочечника перед более новыми.
Более того, развитие электронно-микроскопических исследований дало почву для ещё более радикального и далёкого от ортодоксальной гистологии взгляда на гистогенез надпочечных желёз.
На границе коркового и мозгового вещества, которая традиционно считалась разделом двух абсолютно разнородных тканей, обнаружились смешанные клетки, имеющие как ультраструктурные признаки адренокортикоцитов (округлые, крупные, везикулярного типа митохондрии; гладкие, небольшие, везикулярные элементы ЭПР, липидные включения), так и черты хромаффинных клеток (мелкие, удлиненные митохондрии с пластинчатыми кристами, ЭПР в виде коротких уплощённых канальцев, характерные секреторные гранулы хромаффиноцитов). Впервые их обнаружили О. Эранкё и Л. Ханинен (1960), а вскоре Дж. Барски и соавторы (1961) доказали, что эти клетки сохраняют свой уникальный фенотип и в культуре ткани и, таким образом, несомненно, являются истинно смешанными элементами. Очень вероятно, что смешанные клетки, по своей природе, переходны. Это означало бы, что, побывав в ретикулярной зоне, адренокортикоциты могут затем превращаться в хромаффинные клетки, которые и служат следующей стадией их существования.
В своё время эти наблюдения вызвали настоящий шок и такой авторитет гистологии, как Дж. Родин (1971) пытался прибегнуть к объяснению, что элементы ультраструктуры одних клеток переносятся в виде артефакта в другие клетки на лезвии микротомного ножа!31
В настоящее время нейросекреторные клетки уже не считаются унитарными по своему происхождению (см. выше), а факты, отражающие способность клетки широко пользоваться имеющимися у нее генетическими программами, воспринимаются гораздо спокойнее.
Мозговое вещство надпочечников представлено хромаффинной тканью, открытой Н. Вюльпианом (1856) по способности окрашиваться в зелёный цвет солями железа. Хромаффинные клетки названы так за своё сродство к солям хрома, обусловленное присутствием катехоламинов. У человека они представлены, кроме медуллярного слоя надпочечников, в параганглиях, вблизи симпатических стволов и в стенке крупных сосудов (примерами являются крупнейшие из них - каротидные тела, подключичные тела, яремные клубочки и аорто-лёгочные тела), а также в виде отдельных клеток по ходу вегетативных нервов и в автономных ганглиях. У плода и детей первых 3-4 месяцев жизни хромаффинная ткань особенно развита и образует очень крупные парааортальные ганглии - органы Цукеркандля, локализованные в буром жире близ места ответвления нижней брыжеечной артерии.
Особенное и обильное у надпочечников и кровообращение. Часть артериальной крови поступающей от ветвей почечных и диафрагмальных артерий и даже аорты, идет прямо в капилляры коркового вещества, а затем переходит в капилляры мозгового, но большая её доля проходит по перфорирующим сосудам от капсулы прямо в мозговое вещество (Грип, Дин, 1949). Побывав в его синусоидах и приняв продукты секреции мозгового вещества, часть венозной крови может попадать обратно, в синусоиды коркового вещества через анастомозы. Предполагается, что это создает дополнительные возможности для координации при стрессе продукции катехоламинов и кортикостероидов, а градиент гормональных начал, создаваемый в сосудах, участвует в дифференцировке зон коры надпочечника (П. Хорнсби, А. Кривелло, 1983).
Корковое вещество надпочечников захватывает из крови липопротеиды низкой и очень низкой плотности и утилизирует имеющийся в составе липипротеидных частиц холестерин для производства стероидных гормонов. При необходимости, впрочем, адренокортикоциты способны и сами вырабатывать холестерин из активных остатков уксусной кислоты. По содержанию холестерина надпочечник уступает лишь мозгу. В надпочечниках холестерин полностью этерифицирован. Для стероидогенеза в этих органах необходимо окисление холестеринопроизводных, а это требует высокой интенсивности перекисных процессов и, для реактивации окислительных систем, высокого содержания и быстрого кругооборота витамина С (до полупроцента веса надпочечников представлено этим витамином!). . Аскорбиновая кислота расходуется при стероидогенезе и, до внедрения более точных методов, её количество в надпочечниках даже измеряли, чтобы оценить их функцию. Адаптогенное действие больших доз витамина С, несомненно, связано с его выдающейся ролью в коре надпочечников. Ниже мы кратко рассмотрим биохимию стероидогенеза в коре надпочечников. При этом, участие в стрессе минералокортикоидов и андрогенов будет обсуждено сразу же, а роль глюкокортикоидов, как главных эффекторов стрессорной адаптации, вынесена в отдельный раздел.
Пути стероидогенеза в коре надпочечников показаны на рис. 103 .
Холестерин превращается в стероидогенных клетках в 5-прегненолон при участии Р450-зависимого микросомального фермента, отщепляющего его боковую цепь и окисляющего остаток.
В клубочковой зоне 5-прегненолон превращается ферментом 3-гидроксистероиддегидрогеназой в прогестерон. Микросомальная Р450-С21-гидроксилаза преобразует его в 11-дезоксикортикостерон, а митохондриальная Р450-11-гидроксилаза далее переводит последний в кортикостерон. Затем образуются 18-оксикортикостерон и его 18-кетопроизводное - альдостерон. Альдостерон выделяется в кровь в количестве до 400 мкг в день, исключительно, клубочковой зоной и является важнейшим минералокортикоидом. Кроме него, клубочковая и другие зоны могут освобождать в кровь небольшое количество других минералокортикоидных стероидов - 11-дезоксикортикостерона и 18-оксиальдостерона. Минералокортикоиды отличаются способностью связываться с кортикостероидными рецепторами I типа в цитоплазме клеток-мишеней, что позволяет им задерживать в организме натрий и воду и усиливать выведение калия. Это основные регуляторы объёма внеклеточной жидкости. При стрессе, особенно, вызванном серьёзными травмами, именно минералокортикоидный эффект, а также вазопрессин, способствуют реакции сберегания внеклеточной воды и натрия. Вместе с натрием задерживается бикарбонат, а усиленному выведению подвергаются калий, фосфат и катионы водорода, что способствует внеклеточному алкалозу. В клетках пучковой зоны прогестерон метаболизируется иначе. Он, как и 5-прегненолон, переходит в 17-гидроксипрогестерон с участием Р450-С17-гидроксилазы (и, для 5-прегненолона также 3-гидроксистероиддегидрогеназы), а затем Р450-С21-гидроксилаза переводит 17-гидроксипрогестерон в 11-дезоксикортизол. Под влиянием Р450-С11-гидроксилазы, из данного стероида формируется кортизол (он же - гидрокортизон), основной глюкокортикоид человека, поступающий в кровь, в обычной обстановке, в количестве до 30 мг ежесуточно. Кортикостерон также обладает более слабой глюкокортикоидной активностью и выделяется в кровь (до 4 мг/сутки). Однако, у кортикостерона имеется и ощутимая, по сравнению с кортизолом, хотя и гораздо более слабая, чем у альдостерона, минералокортикоидная активность. У человека в кровь выделяются также небольшие количества кортизона. Глюкокортикоиды секретируются не только пучковой, но и сетчатой зоной. В свою очередь, не только сетчатая, но и пучковая зона выделяют половые стероиды.
Биохимические эффекты глюкокортикоидов осуществляются через внутриклеточный стероидный рецептор II типа и составляют основу стрессорной адаптации. Они рассматриваются подробно в специальном разделе данной главы ниже.
В клетках сетчатой и внутренней части пучковой зон коры надпочечников лиц обоего пола осуществляется и еще одна цепь (4-путь) преобразований стероидов. При этом прогестерон преобразуется в 17--оксиформу, а последняя - в 4-андростен-3,17-дион (андростендион) и в 11-окси-4-андростен-3,17-дион (11-гидроксиандростендион), обладающие слабой андрогенной активностью. Параллельно, часть прегненолона превращается в 17-оксиформу, а затем - в дегидроэпиандростерон и, позже - в 4-андростен-3,17-дион. Количественно, главный надпочечниковый андроген - дегидроэпиандростерон (до 30 мг в сутки). Он секретируется и в свободном виде, и в форме сульфата и представляет собой андроген, в 5 раз менее активный, чем тестостерон. Кора надпочечника выделяет также немного андростендиона и 11-гидроксиандростендиона. В периферических тканях, главным образом, в печени, а также в самом надпочечнике, дегидроэпиандростерон и андростендион могут превращаться в наиболее сильный андроген - тестостерон. Один из метаболитов андрогенов - андростерон - известен как этиохолоналон (см. также стр. 360) и способен стимулировать лихорадку и печёночный ответ острой фазы, претендуя таким образом на роль одного из предсказанных Селье “провоспалительных стероидов”32. Сетчатая зона надпочечников лиц обоего пола выделяет в незначительных количествах и эстрогены. Прогестерон также освобождается в кровь, причём, по-видимому. клетками всех трёх зон коры. Адаптогенное действие прогестерона на организм беременной женщины хорощо известно. Не исключено, что этот мощный стероид, несмотря на его малые количества в надпочечниковом секрете, имеет значение и при стрессорной адаптации.
Надпочечниковые андростероиды действуют на андрогенный рецептор и участвуют в приобретении мужских вторичных половых признаков. И у мужчин, и у женщин они имеют отношение к формированию либидо, агресивности, доминантного поведения и анаболическим эффектам, особенно, в мышцах. При избыточной продукции они могут обусловить вирилизацию у женщин. В конексте темы стресса, чрезвычайно интересны данные об участии надпочечниковых андрогенов в стрессорной адаптации и в индивидуальных особенностях ответа на стресс. Дело в том, что исследования на павианах-гамадрилах показали, что лидерские качества обезьян и их иерархическое положение в стаде определяются нюансами стероидогенеза при стрессорном ответе. Рядовые самцы и самки отвечали на стрессоры активацией продукции глюкокортикоидов. Однако, так называемые -самцы , то есть “вожди” обезъяньих сообществ, как оказалось, способны, на общем глюкокортикоидном фоне, отвечать на стрессоры выбросом в кровь достаточно существенных количеств андрогенов (А.А. Лешнер, 1978, Н.П. Гончаров и соавт., 1979). Вообще, при стрессе продукция гонадотропных гормонов гипофиза и гонадолиберина гипоталамуса снижается. Это проявляется у большинства млекопитающих в виде этологического феномена Ропарца - половое поведение одного самца подавляется, а стрессорная активность гипоталамо-гипофизарно-надпочечникового комплекса активируется через амигдало-гипоталамические связи феромонами другого самца (Э.О. Уилсон, 1975). То есть, большинству самцов не до размножения в минуту опасности. Лидеры животных сообществ у приматов, как видно, представляют исключение из этого правила. Дело в том, что гонадотропные гормоны (ЛГ и ФСГ) слабо влияют у приматов и человека на андрогенообразование в надпочечниках. Гораздо важнее для этого процесса тропный эффект АКТГ. Лидерские потенции -самцов, по-видимому, основаны на усиленном действии АКТГ на образование надпочечниковых андрогенов, что может быть сопряжено с феромоновыми обонятельными сигналами, влияющими на поведение других членов сообщества.. Можно сказать, что главенствуют в минуту опасности те, кто находит в ней “вкус”. Более высокая продуция тестостерона при стрессе у лидеров сочетается с меньшим, чем у побеждённых или подчинённых животных, глюкокортикоидным и катехоламиновым ответом, с доминирующим поведением и способностью к осмысленным наступательным действиям в стрессирующей обстановке (Г.Э. Вейсфельд, 1982). Этологические данные о связи андрогенового ответа при стрессе с доминирующим поведением были с успехом использованы в практике военной медицины для тестирования и отбора военнослужащих на должности младших командиров (Л. Кройц, Л. Роуз, Дж. Дженнингс, 1972). Оказалось, что чувство страха и уровень стресса при боевых действиях у военнослужащих минимальны в том случае, если их служебное положение и неформальное иерархическое место в коллективе совпадают (П. Бурн, 1971). Выше уже указывалось, что избыток андрогенов ускоряет лобно-теменное облысение у мужчин. В этой связи интересно, что В.С. Эфроимсон, изучая фотографии гениев и политических лидеров разных эпох, обнаружил среди них необычно высокий процент “высоколобых” (1982). Если мы рассмотрим изображения хотя бы героев одной только отечественной истории ХХ столетия, не останется сомнений, что вежливый термин “высоколобость” в данном случае включает и носителей раннего андрогенного облысения. С точки зрения этологии млекопитающих, лидерские лысины вполне могут отражать уникальные поведенческие особенности их носителей, проявляющиеся в стрессовой обстановке.
По мнению Т.А.Обута и соавторов (1979), андрогены надпочечников имеют существенное значение для преодоления последствий стрессорной активации катаболических процессов. Они необходимы для физиологического выхода из стресса без дистресса, с активацией восстановительно-анаболических механизмов, особенно при хронических и повторяющихся стрессах.
В общей сложности кора надпочечников выделяет в кровь не менее 50 гормонально активных стероидов.
Теперь о секреторных функциях хромаффинной ткани надпочечников. За пределами мозгового вещества надпочечников, синаптическими передатчиками симпатических нейронов служат норадреналин и дофамин. Мозговое вещество надпочечников способно их вырабатывать, особенно, у плода, у которого норадреналин - основной катехоламин стресса (см. ниже раздел “Онтогенетические аспекты стресса”). Но резко преобладающим катехоламином в секрете этого отдела надпочечных желёз у взрослых является адреналин (У.С..фон Эйлер, 1946). У крыс, даже новорожденных, адреналиновые клетки в мозговом веществе надпочечников составляют 75%. Это происходит из-за большой активности в мозговом веществе надпочечников (но не в других параганглиях) фермента фенилэтаноламин-N-метилтрансферазы, превращающей норадреналин в адреналин. Адреналин - главный агонист -адренергических рецепторов, а норадреналин влияет, в основном, на адренорецепторы. В связи с этим, их действие при стрессе неидентично (см. ниже).
Мозговое вещество надпочечников вырабатывает и нейропептиды - нейротензин, мет-энкефалин и эндорфин (Б. Ливетт и соавт., 1981). ПОМК экспрессируется в самих хромаффинных клетках и может поступать сюда из гипофиза для протеолитической обработки. В хромаффинных клетках можно выявить также присутствие нонапептидов, вещества Р, нейропептида Y, динорфина, ВИП и бомбезина.
При сильном стрессе уровень катехоламинов в крови возрастает в 4-5 раз. Родовой стресс приводит к абсолютно максимальным значениям концентрации катехоламинов (см. ниже раздел “Онтогенетические аспекты стресса”). При тяжелых травмах зарегистрированы концентрации адреналина - в 50, а норадреналина - в 20 раз выше нормы (Ф. Хокер, 1988).
Рассматривая регуляцию ответа надпочечников при стрессе, надо признать. что их корковое вещество не имеет секреторной иннервации и представляет пример органа, главная функция которого регулируется, исключительно, гуморальным путём (М.С. Кахана, 1968). Вместе с тем, регуляция деятельности мозгового вещества, главным образом, нервная и опосредована холинергическим симпатическим сигналом.Здесь мы опять видим, что надпочечник, прямо-таки, живое единство противоположностей. Нервный путь, активирующий хромаффиноциты, начинается в гипоталамусе и проходит через ретикулярную формацию, спинной мозг, солнечное сплетение. Секреторные ветви малого чревного нерва иннервируют хромаффиноциты и стимулируют их секрецию, причём доходящие до мозгового вещества волокна являются постганглионарными, так как само мозговое вещество - не симпатический ганглий, как неверно указано в некоторых старых источниках, а именно параганглий.
Нейроны второго порядка в этом симпатическом пути не сконцентрированы в отдельном узле, а рассеяны, согласно направлению их эмбриональной миграции, по всей его протяжённости - от пограничного ствола и до самого мозгового вещества (В.И. Ильина, 1946). Достигающие надпочечников парасимпатические ветви блуждающего и диафрагмального нервов, по-видимому, передают вазомоторные импульсы и не являются секреторными. Гуморальные факторы имеют для секреции катехоламинов при стрессе вспомогательное значение. Кортикостероиды, при длительном повышении их уровня в оттекающей от коры надпочечников крови, могут повышать синтез фермента тирозингидроксилазы и стимулировать тем самым продукцию катехоламинов, попадая в мозговое вещество через внутринадпочечниковые анастомозы сосудистых систем кортикальной и медуллярной части органа.
Для клубочковой зоны коры надпочечников основными стимуляторами являются следующие:
Ангиотензин II и, в меньшей степени, ангиотензин III, служат наиболее мощными митогенными и тропными факторами для клубочковой зоны коры надпочечников (Г.Дж. Нассдорфер и соавт., 1983). Ангиотензины образуются из плазменного предшественника ангиотензиногена, превращаемого в активную форму ферментом ренином, который, в основном, формируется из проренина в апудоцитах macula densa почек. Ренин, а значит, и ангиотензины продуцируются, в свою очередь, в ответ на симпатический норадреналовый нервный сигнал, снижение давления и потерю натрия, переход тела в вертикальное положение и выделение некоторых простагландинов. Избыток соли, гипертензия, калий, кальций и сами ангиотензины с вазопрессином в норме тормозят активность ренин-зависимых механизмов. Этот механизм стимуляции минералокортикоидной функции является срочным, так как время полужизни ренина в плазме не превышает 15, а ангиотензина II - двух минут. Ангиотензины участвуют и в механизмах стресса.
АКТГ обладает сравнительно слабым тропным и митогенным действием на клубочковую зону, которое отчётливо проявляется при его большом избытке.
Мелатонин и серотонин эпифиза сильно стимулируют продукцию минералокортикоидов. Последний вызывает также гипертрофию клубочковой зоны (П. Ребуффат и соавт., 1988). До установления природы гормонов шишковидной железы минералокортикотропная активность эпифиза приписывалась гипотетическому эпифизарному “адреногломерулокортикотропину (АГТГ)”.
Клетки клубочковой зоны характеризуются прямой чувствительностью к К+/Na+ соотношению. Чем оно больше, тем активнее минералокортикоидная секреция.
Минералокортикотропный эффект обнаружен у -липотропина (А. Гайтон, 1989), вазопрессина (вкупе с митогенным действием на z. glomerulosa - Н. Пейе и соавт., 1984), СТГ ( Р.Э. Крамер и соавт., 1977), -МСГ и -МСГ (Дж.П. Уинсон и соавт.,1980).
По некоторым данным, существуют естественные натрийуретические гормоны - предсердный натрийуретический полипептид и вырабатываемые в подкапсулярной зоне коры надпочечников натрийуретические уабаиноподобные стероиды (Дж. Х. Люденс и соавт, 1992) - аналоги сердечных гликозидов. Они понижают выделение минералокортикоидов и являются антагонистами их действия. Дофамин также является блокатором синтеза альдостерона. Продукция минералокортикоидов подавляется и эндогенными опиатами.
При стрессе происходит усиление минералокортикоидной активности под действием АКТГ, вазопрессина и ангиотензинов, синтез которых стимулируется с участием симпатической нервной системы. Концентрация альдостерона в плазме в острую фазу после хирургических травм возрастает в 5-6 раз (Ж.Ле Кезне и соавт., 1985). В фазу выхода из стресса синтез минералокортикоидов уменьшается.
Основным стимулятором глюкокортикоидной секреции служит АКТГ. Кроме того, у плода существенную роль в стимуляции глюкокортикоидной функции играет СТГ (У.П. Деваскар и соавт., 1981), а также МСГ. При очень больших концентрациях катехоламинов в крови последние могут усиливать продукцию глюкокортикоидов. Предполагается, что этот эффект может иметь значение внутри надпочечника, поскольку венозная кровь, обогащённая катехоламинами, попадает из медуллярной части органа в кортикальную. Показана возможность стимуляции продукции глюкокортикоидов антителами против ДНК-протеида адренокортикоцитов, причём иммуноглобулины проникают в клеточные ядра и стимулируют синтез РНК. Антитела к ядерному матриксу сравнительно мало стимулируют стероидогенез, но оказывают митогенный эффект на клетки пучковой зоны (А.Ш. Зайчик и соавт., 1985). Так как антикортикосупрареналовые аутоантитела обнаруживают у здоровых субъектов и при некоторых формах гиперфункции и гиперплазии надпочечников (Д. Петраньи, 1983), то не исключено, что могут существовать нормальные и патологические иммунологические механизмы стимуляции глюкокортикостероидогенеза.
АКТГ оказывает острый стимулирующий эффект на продукцию и выброс глюкокортикоидов через поверхностные рецепторы и цАМФ-зависимый цитоплазматический посредник. При этом активируется синтез прогестерона из прегненолона и возрастает активность 11гидроксилазы. Комплекс рецептора и гормона проникает внутрь адренокортикоцитов и оказывает отсроченный эффект, путём активации фосфатидилинозитоловых и пептидных посредников и дерепрессии синтеза ключевых протеинов стероидогенеза (А. Дазо, 1983). Подострые и хронические морфогенетические эффекты АКТГ на кору надпочечников также требуют внутриклеточного проникновения гормонорецепторного комплекса и воздействия на экспрессию генов.
Под влиянием АКТГ, при потенцирующем действии других стимуляторов, концентрация кортизола в крови растет уже через 5 мин. и достигает максимума при одноразовом стрессировании к 30 мин., причём уровень глюкокортикоидов при сильном стрессе может повыситься в 20 раз. После перелома ноги и её иммобилизации стресс приводит к повышению уровня глюкокортикоидов плазмы длительностью не менее чем 12-14 ч.
На продукцию надпочечниковых андрогенов АКТГ оказывает достаточно выраженный стероидогенный эффект. Дополнительным важным стимулятором продукции половых стероидов в коре надпочечников может быть пролактин. Под влиянием этого гормона увеличивается выработка андрогенов при стрессе. Исследования на добровольцах, проведенные военными медиками Великобритании, показали адаптогенную роль пролактина при стрессах, вызванных участием в манёврах и боевых действиях. Не исключено, что описанные выше особенности секреции надпочечниковых андрогенов при стрессе находятся под контролем пролактина. Клетки сетчатой зоны обладают рецепторами нейротензина, который вырабатывается в мозговом веществе надпочечников и поступает оттуда в корковое по анастомозам сосудистых сетей. Предполагается (В.Г. Шаляпина, Н.А. Смиттен, 1993), что нейротензин способен стимулировать андрогенный ответ при стрессе.
