- •Глава 1. Методы очистки вод на аэс
- •Применение воды в промышленности и примеси, содержащиеся в воде
- •1.6. Ионный обмен
- •Глава 2. Устройство, конструкция и основы эксплуатации фильтров
- •2.1. Классификация фильтров
- •2.2. Схемы обвязки механического,
- •2.3. Вспомогательные системы и трубопроводы, обеспечивающие эксплуатацию фильтра
- •2.4. Схема обвязки ловушки зернистых материалов
- •2.5. Конструкция фильтров и ловушки зернистых
- •2.6. Объем теплотехнического контроля фильтра
- •2.7. Режимы нормальной эксплуатации фильтра и
- •2.8. Подготовка и ввод в работу фильтра и ловушки зернистых материалов
- •Подготовка и ввод в работу фильтра
- •Подготовка и ввод в работу ловушки зернистых материалов
- •2.9. Техническое обслуживание фильтра и ловушки
- •2.10. Вывод из работы фильтра и ловушки зернистых материалов в резерв
- •2.11. Взрыхляющая промывка фильтра
- •2.12. Регенерация ионообменного фильтра
- •2.13. Промывка ловушки зернистых материалов
- •2.14. Гидровыгрузка фильтрующего материала
- •2.15. Загрузка фильтрующего материала
- •2.16. Режимы аномальной эксплуатации фильтра
- •2.16.1. Возможные неисправности в работе фильтров
- •Возможные неисправности в работе фильтров и ловушек зернистых материалов и способы их устранения
- •2.16.2. Возможные аварийные режимы в работе фильтров
- •Глава 3. Устройство и работа выпарной
- •3.1. Компоновка выпарной установки
- •3.2. Вспомогательные системы и узлы выпарной
- •3.3. Конструкция и принцип работы выпарного аппарата
- •Краткие технические характеристики выпарного аппарата
- •3.4. Конструкция и принцип работы доупаривателя
- •Краткие технические характеристики доупаривателя
- •3.5. Конструкция и принцип работы конденсатора-дегазатора
- •20 % Вторичного пара; 3 – выход дегазированного конденсата;
- •Краткие технические характеристики конденсатора-дегазатора
- •3.6. Конструкция и принцип работы дефлегматора сдувок
- •Краткие технические характеристики дефлегматора сдувок
- •3.7. Конструкция и принцип работы монжюса кубового остатка
- •Краткие технические характеристики монжюса
- •3.8. Конструкция и принцип работы насосов
- •Краткие технические характеристики насоса дегазированной воды
- •3.9. Конструкция и принцип работы бака пеногасителя
- •Краткие технические характеристики бака пеногасителя
- •3.10. Теплотехнический контроль выпарной установки
- •3.11. Автоматическое регулирование выпарной установки
- •Объем автоматического регулирования
- •Глава 4. Система предварительной очистки
- •4.1. Компоненты системы предочистки сырой воды
- •Очистки добавочной воды и основные маршруты потоков сред
- •4.2. Вспомогательные установки системы
- •4.3. Конструкция осветлителя
- •Технические характеристики вти-400
- •4.4. Процессы обработки воды на осветлителе
- •4.5. Конструкция и теория эксплуатации
- •Технические характеристики механического фильтра
- •4.6. Баковое хозяйство системы предочистки
- •Технические характеристики бакового хозяйства предочистки
- •Технические характеристики насосов системы предочистки
- •4.7. Измерительная аппаратура, контроль, управление системы предварительной очистки добавочной воды
- •Технологическая сигнализация системы предочистки
- •4.8. Обслуживание системы предочистки в режиме
- •Подготовка к пуску осветлителя
- •4.9. Подготовка к вводу. Ввод и вывод из работы
- •4.10. Эксплуатация системы предочистки
- •Вероятные причины неисправностей системы предочистки и методы их устранения
- •Глава 5. Система обессоливания
- •5.1. Маршруты потоков сред
- •5.2. Компоненты системы обессоливания
- •5.3. Конструкция и теория эксплуатации ионообменных
- •5.3.1. Конструкция ионообменных фильтров
- •Техническая характеристика фильтров
- •5.3.2. Баковое хозяйство системы обессоливания добавочной воды
- •Технические характеристики бакового хозяйства
- •5.3.3. Насосы системы обессоливания добавочной воды
- •Технические характеристики насосов системы
- •5.3.4. Процессы обработки воды на ионообменных фильтрах
- •5.4. Система обессоливания в режиме нормальной
- •5.4.1. Режим нормальной эксплуатации системы обессоливания
- •5.4.2. Подготовка к вводу цепочек обессоливания
- •5.4.3. Ввод в работу цепочек обессоливания
- •5.4.4. Подготовка к вводу фильтров смешанного действия
- •5.4.5. Подготовка к вводу
- •5.4.6. Режим работы бака запаса конденсата
- •5.4.7. Режим работы бака чов
- •5.4.8. Обслуживание системы обессоливания в режиме
- •5.5. Система обессоливания в режиме функциональных
- •5.5.1. Регенерация цепочки обессоливания
- •5.5.2. Взрыхление фильтров цепочки
- •5.5.3. Регенерация фильтров цепочки
- •5.5.4. Регенерация катионитовых фильтров цепочки
- •5.5.5. Регенерация анионитовых фильтров цепочки
- •5.5.6. Домывка цепочки по схеме пропуска реагентов
- •5.5.7. Домывка фильтров по малой рециркуляции
- •5.5.8. Домывка фильтров по рабочей схеме
- •5.5.9. Домывка цепочки по большой рециркуляции
- •5.5.10. Режим регенерации фсд
- •5.5.11. Гидроперегрузка шихты из фсд в фильтр-регенератор
- •5.5.12. Взрыхление и разделение шихты в фильтре–регенераторе
- •5.5.13. Уплотнение ионитов в фильтре-регенераторе
- •5.5.14. Установление встречных потоков обессоленной воды
- •5.5.15. Пропуск кислоты и щелочи
- •5.5.16. Отмывка шихты по линиям регенерации
- •5.5.17. Перемешивание ионитов сжатым воздухом
- •5.5.18. Домывка ионитов
- •5.5.19. Гидроперегрузка шихты из фр в фсд
- •5.6. Эксплуатация системы обессоливания
- •Возможные неисправности и способы их устранения
- •5.7. Ограничения по эксплуатации оборудования
- •5.7.1. Ограничения по эксплуатации бмк и бмщ
- •5.7.2. Ограничения по эксплуатации цепочек
- •5.7.3. Ограничения по эксплуатации фсд
- •5.7.4. Общие ограничения по эксплуатации системы
- •Глава 6. Блочная обессоливающая установка
- •6.1. Назначение, состав и устройство блочной
- •Смешанного действия; флзм-1…5 – фильтр-ловушка зернистых материалов;
- •6.2. Характеристика оборудования боу и его конструкция
- •Характеристика фильтров
- •Характеристика емкостей
- •Характеристика насосов
- •6.3. Контрольно-измерительные приборы и устройства
- •6.4. Технология очистки конденсата на боу
- •Во время работы фильтра:
- •6.5. Техническое обслуживание боу. Общие положения
- •6.5.1. Подготовка и пуск боу в работу из резерва
- •6.5.2. Обслуживание боу во время работы
- •6.5.3. Обслуживание регенерационной установки
- •Основные показатели растворов, участвующих в регенерации
- •Основные показатели окончания домывки шихты
- •6.5.4. Защита, блокировка, сигнализация боу
- •Технологическая сигнализация
- •Аварийная сигнализация
- •6.6. Обслуживание боу в аварийном режиме.
- •6.6.1. Аварийные режимы эмф
- •6.6.2. Аварийные режимы фсд
- •6.6.3. Аварийный режим регенеративной установки
- •6.6.4. Ограничения в эксплуатации боу
- •Глава 7. Назначение, состав и технологическая
- •Номер и назначение сво с реактором типа ввэр-1000
- •7.1. Назначение и состав сво-1
- •7.2. Фильтр-ловушка зернистых материалов
- •7.3. Фильтр–контейнер
- •7.4. Сорбент
- •Состав губчатого титана тп – вс-1 (ту 48-05-61-11/0-82)
- •7.5. Технология очистки теплоносителя первого контура
- •7.6. Промывка и дезактивация оборудования сво-1
- •7.7. Промывка высокотемпературного фильтра
- •7.8. Дезактивация фильтра-контейнера
- •Глава 8. Назначение, состав и технологическая
- •8.1. Назначение и состав сво-2
- •И оргпротечек (сво – 2)
- •Технические характеристики ионитового фильтра
- •Технические характеристики фильтра-ловушки зернистых материалов
- •8.2. Работа системы сво-2
- •Контролируемые параметры системы сво-2
- •8.3. Регенерация фильтров системы сво-2
- •Регенерация катионитового фильтра в аммиачно-калиевой форме
- •Регенерация анионитового фильтра
- •Отмывка фильтра-ловушки зернистых материалов
- •Глава 9. Назначение, состав и технологическая
- •9.1. Назначение и состав сво-3
- •9.2. Характеристика, устройство и принцип работы
- •9.2.1. Бак приямка трапных вод
- •9.2.2. Насосы бака приямка трапных вод
- •9.2.3. Монжюс забора шлама из бака приямка трапных вод
- •9.2.4. Фильтр “Фартос”
- •9.2.6. Бак декантата
- •9.2.7. Насосы бака декантата
- •9.2.8. Фильтры предочистки трапных вод
- •9.2.9. Баки осветленных трапных вод
- •9.2.10. Насосы баков осветленных трапных вод
- •9.2.11. Насосы приямков помещений
- •9.2.12. Бак уплотняющей воды
- •9.2.13. Насосы уплотняющей воды
- •9.2.14. Выпарной аппарат (ва)
- •9.2.15. Конденсатор-дегазатор (кд)
- •9.2.16. Дефлегматор сдувок (дс)
- •9.2.17. Монжюс кубового остатка
- •9.2.18. Бак пеногасителя
- •9.2.19. Насосы дегазированной воды
- •9.2.20. Механический фильтр доочистки дистиллята
- •9.2.21. Теплообменник охлаждения дистиллята (тод)
- •9.2.22. Катионитовый фильтр доочистки дистиллята
- •9.2.23. Анионитовый фильтр доочистки дистиллята
- •9.2.24. Ловушка зернистых материалов (лзм)
- •9.2.25. Контрольный бак (кб)
- •9.2.26. Насос контрольных баков
- •9.2.27. Бак собственных нужд (бсн)
- •9.2.28. Насос баков собственных нужд
- •9.3. Технология очистки трапных вод
- •Прием и предварительная очистка трапных вод
- •9.4. Техническое обслуживание
- •Объем теплотехнического контроля оборудования сво-3
- •Объем водно-химического контроля системы сво-3
- •9.4.1. Кислотная промывка выпарного аппарата
- •9.4.2. Щелочная промывка выпарного аппарата
- •Операции по проведению кислотной и щелочной промывок выпарного аппарата
- •9.4.3. Кислотная промывка конденсатора-дегазатора
- •9.4.4. Взрыхляющая отмывка фильтрующего материала
- •9.4.5. Регенерация и отмывка кф
- •9.4.6. Регенерация и отмывка аф
- •9.4.7. Промывка лзм
- •Режимная карта работы фильтров системы сво-3
- •Глава 10. Назначение, состав и технологическая
- •10.1. Назначение и состав сво-4
- •10.2. Порядок работы сво-4
- •Объем теплотехнического контроля системы сво-4
- •Объем водно-химического контроля системы сво-4
- •10.3. Техническое обслуживание системы сво-4
- •10.3.1. Регенерация и отмывка мф (кф)
- •10.3.2. Регенерация и отмывка аф
- •После каждого часа отмывки осуществляется отбор проб на анализ после аф на , , и щелочность.
- •Режимная карта фильтров сво-4
- •Глава 11. Назначение, состав и технологическая
- •11.1. Назначение, устройство и принцип работы сво-5
- •11.2. Техническое обслуживание системы сво-5
- •Основные параметры системы сво-5
- •11.2.1. Регенерация мф и кф
- •11.2.2. Регенерация аф
- •Глава 12. Назначение, состав и технологическая
- •12.1. Назначение, состав и принцип работы системы сво-6
- •12.2. Технология переработки борсодержащей воды
- •Глава 13. Назначение, состав и технологическая
- •13.1. Назначение, состав и принцип работы системы сво-7
- •13.2. Техническое обслуживание системы сво-7
- •Объем теплотехнического контроля
- •Объем водно-химического контроля системы сво-7
- •13.2.1. Взрыхляющая отмывка фильтров предочистки
- •13.2.2. Взрыхляющая отмывка фильтрующего материала
- •13.2.3. Взрыхляющая отмывка фильтрующего материала
- •13.2.4. Регенерация и отмывка кф
- •13.2.5. Регенерация и отмывка аф
- •13.2.6. Промывка лзм
- •Режимная карта работы фильтров системы сво-7
- •Глава 1. Методы очистки вод на аэс
- •Глава 2. Устройство, конструкция и основы эксплуатации фильтров
- •Глава 3. Устройство и работа выпарной установки
- •Глава 4. Система предварительной очистки добавочной воды
- •Глава 5. Системы обессоливания добавочной воды
- •Глава 6. Блочная обессоливающая установка
- •Глава 7. Назначение, состав и технологическая схема системы
3.2. Вспомогательные системы и узлы выпарной
УСТАНОВКИ
Система греющего пара предназначена для подачи греющего пара на выпарной аппарат и доупариватель греющего пара в целях образования вторичного пара, а также на конденсатор-дегазатор для обеспечения дегазации.
Система конденсата греющего пара служит для отвода конденсата греющего пара после выпарного аппарата, доупаривателя и конденсатора-дегазатора.
Система технической воды подается на конденсатор-дегазатор и дефлегматор сдувок для охлаждения вторичного пара, а также для охлаждения подшипников насосов дегазированной воды.
Система реагентов предназначена для подачи растворов NaОН и HNO3 в выпарной аппарат, NaOH в доупариватель, HNO3 в конденсатор-дегазатор в целях проведения щелочной и кислотных промывок. Для обеспечения заданного водно-химического режима работы выпарного аппарата на вход в него предусмотрена дозировка реагентов.
Система сжатого воздуха служит для сдувки газов из конденсатора-дегазатора, а в выпарных установках систем СВО-3, СВО-7, также для транспортировки кубового остатка из монжюса в емкости хранения жидких радиоактивных отходов и вытеснения раствора пеногасителя в выпарной аппарат.
Система промывочной воды предназначена для промывки и заполнения чистым дистиллятом выпарного аппарата доупаритвателя, а также заполнения гидрозатвора выпарного аппарата.
Система газовых сдувок служит для удаления из оборудования газов, а при необходимости и очистки их.
Узел пеногашения имеется лишь в выпарных установках систем СВО-3 и СВО-7 и служит для подачи в выпарной аппарат раствора пеногасителя при образовании в нем пены.
3.3. Конструкция и принцип работы выпарного аппарата
Выпарной аппарат предназначен для очистки от растворимых активных и неактивных примесей воды в системах СВО-3, СВО-7 и концентрирования раствора борной кислоты в системе СВО-6 методом дистилляции.
Нормальная работа выпарного аппарата обеспечивается:
непрерывным отводом вторичного пара из выпарного аппарата на конденсатор-дегазатор;
непрерывным подводом к выпарному аппарату греющего пара;
непрерывным отводом от выпарного аппарата конденсата греющего пара;
непрерывным подводом к выпарному аппарату флегмы;
непрерывным перетоком части упаренного раствора из выпарного аппарата в доупариватель, если последний имеется в данной ВУ.
Выпарной аппарат (рис. 3.4) – это аппарат естественной циркуляции с вынесенной греющей камерой, состоящей из следующих основных узлов: сепаратора, греющей камеры и циркуляционного трубопровода.
Соединение узлов аппарата между собой выполнено на фланцевых разъемах. Греющая камера (рис. 3.5) представляет собой одноходовой вертикальный кожухотрубный теплообменник, в котором в межтрубное пространство подается греющий пар, а по трубам циркулирует упариваемый раствор.
Трубы присоединены к трубным решеткам на сварке для обеспечения герметичности и исключения попадания упариваемого раствора в межтрубное пространство. Для снятия напряжений, возникающих во время работы и пуска, в греющих трубах, корпусе и в местах приварки труб с трубными решетками, на греющей камере предусмотрен линзовый компенсатор. На корпусе камеры находится расширитель с полулинзами, а внутри камеры - отбойник, способствующий более равномерному распределению греющего пара по сечению трубного пучка и исключающий эрозионный износ трубчатки входящим греющим паром.
Удаление неконденсирующихся газов из межтрубного пространства в верхней части камеры производится через штуцер сдувки.
Для опорожнения выпарного аппарата по исходной воде имеется соответствующий трубопровод, проходящий через днище корпуса теплообменника.
Для удобства транспортирования на греющей камере предусмотрены строповочные устройства (крюк, цапфы, ушки).
Верхняя часть греющей камеры соединена с сепаратором через верхнюю камеру:
трубопроводом диаметром 25 мм, служащим для удаления воздуха (при заполнении выпарного аппарата) и неконденсирующихся газов (при работе);
трубопроводом диаметром 377 мм с фланцевым разъемом для перепуска пароводяной смеси. Во фланцевое соединение монтируется дроссельная шайба для увеличения давления (а следовательно, и температуры кипения) в теплообменнике, а также для предотвращения пенообразования.
Рис. 3.4. Элементы выпарного аппарата:
1 – вход исходного раствора; 2 – выход вторичного пара; 3 – вход греющего пара;
4 – выход конденсата пара; 5 – опорожнение; 6 – выход упаренного раствора;
7 – сдувка неконденсирующихся газов; 8 – вход флегмы; 9 – вход промывочной воды, азотной кислоты, едкого натра; 10 – вход пеногасителя; 11 – вход вторичного пара
после сепаратора доупаривателя; 12 – заполнение гидрозатвора;
13 – опорожнение гидрозатвора; 14 – для сигнализатора пены;
15 – для уравнительного сосуда КИП; 16 – смотровое окно; 17 – люк
Рис. 3.5. Конструкция греющей камеры выпарного аппарата
Нижняя часть греющей камеры соединена с сепаратором через нижнюю растворную камеру и циркуляционный трубопровод. Циркуляционный трубопровод имеет Г-образный вид и служит для приема исходной воды, создания циркуляции по контуру сепаратор – греющая камера и для передачи упаренного раствора либо в доупариватель, либо в монжюс и тому подобное, в зависимости от технологической системы, в которой установлен выпарной аппарат.
Кроме того, циркуляционный трубопровод имеет фланцевый разъем, в котором устанавливается дроссельная шайба, предназначенная для уменьшения кратности циркуляции упариваемой жидкости и, соответственно, улучшения упаривания.
Сепаратор (рис. 3.6) представляет собой сварной цилиндрический сосуд с эллиптическими днищами, снабженный тремя люками и технологическими штуцерами, а также штуцерами КИП. Технологические штуцера предусматривают выход вторичного пара, вход флегмы, вход промывочной воды, сход пеногасителя, вход промывочной воды на заполнение гидрозатвора и выход при опорожнении гидрозатвора.
Для очистки вторичного пара от капельного уноса в сепараторе имеются два паросепарационных устройства.
Первое сепарационное устройство представляет собой жалюзийный отбойник (рис. 3.7), предназначенный для отделения влаги от пара, и переливную тарелку, скрепленную шестью ребрами жесткости. Тарелка выполнена в виде перфорированного горизонтального листа с отверстиями, просверленными в шахматном порядке. К тарелке приварена труба, заведенная под уровень выпариваемой воды в сепараторе и служащая для слива воды с тарелки. Для промывки пара перпендикулярно тарелке приварены перфорированные (т.е. имеющие отверстия) ребра, создающие уровень воды на тарелке примерно 500 мм (рис. 3.8). Кроме того, в этих ребрах крепятся клапаны (крышки). Клапан прямоугольной формы (рис. 3.9, 3.10) установлен на перфорированном листе с зазором за счет отогнутых в сторону дырчатого листа углов клапана и закреплен на двух стержнях, пропущенных через отверстия перфорированного листа. Стержень фиксирует положение клапана на тарелке и не дает ему смещаться в горизонтальной плоскости. Стержни имеют рабочую часть, изогнутую по радиусу, и ограничители хода, выполненные в виде крюка, загнутого к оси стержня под углом 900. Клапан имеет плавающий характер работы и может поворачиваться под действием струи пара на угол до 450 по отношению к тарелке, что позволяет увеличить площадь живого сечения перфорированного листа до 87,2 % площади сечения сепаратора.
Рис. 3.6. Конструкция сепаратора выпарного аппарата:
1 – крышка; 2 – перфорированная тарелка; 3 – жалюзийный отбойник;
4 – лист металла; 5 – перегородка; 6 – жалюзийный отбойник;
7 – переливная трубка; 8 – смотровое окно; 9 – днище; 10 – опоры;
11 – отбойник; 12 – корпус сепаратора; 14 – перегородка;
5 – переливная трубка; 16 – гидрозатвор; 17 - лаз
Рис. 3.7. Нижний жалюзийный отбойник сепаратора
Рис. 3.8. Барботажная переливная тарелка сепаратора
Рис. 3.9. Фрагмент барботажной переливной тарелки
Рис. 3.10. Клапан барботажной переливной тарелки в закрытом и открытом
положениях
Второе сепарационное устройство состоит из жалюзийного отбойника, аналогичного по конструкции отбойнику на рис. 3.7, и из промывочного устройства. Промывочное устройство – это слой колец Рашига высотой 1500 мм, лежащий на перфорированной тарелке. Кольца Рашига представляют собой кольца диаметром 15 мм, длиной 15 мм и толщиной стенки 0,8 мм, изготовленные из нержавеющей стали. Сверху слой колец Рашига закрыт перфорированной крышкой. Промывочное устройство в процессе эксплуатации выпарного аппарата на 750 мм заполнено водой, подаваемой насосами дегазированной воды по линии флегмы. Данный уровень поддерживается за счет гидрозатвора выпарного аппарата, а его работа основана на принципе сообщающихся сосудов, в качестве которых в данном случае выступают слой колец Рашига и переливная труба гидрозатвора.
Очистка вторичного пара от капелек концентрата заключается в объемной сепарации и последовательном прохождении им сепарационных устройств. Принцип объемной сепарации заключается в слиянии мелких капелек концентрата при подъеме пара вверх в более крупных каплях и стекании их вниз. То же самое происходит в жалюзийном отбойнике вследствие многократного изменения направления потока пара.
Паропромывочная тарелка работает следующим образом. Пар поступает на тарелку снизу и проходит через отверстия перфорированного листа. Жидкость (флегма) поступает на тарелку сверху через выходной патрубок гидрозатвора и движется по перфорированному листу к сливному карману. В результате пар барботирует в виде мелких пузырьков через слой флегмы и оставляет в ней большую часть примесей.
При малых нагрузках на пару скорость вторичного пара в отверстиях такова, что его энергии недостаточно для преодоления веса клапанов, и они остаются на поверхности перфорированного листа. В этом случае пар проходит через не закрытые клапанами отверстия. Под клапанами образуется паровая подушка с давлением, равным примерно сопротивлению парожидкостного слоя на тарелке, и жидкость поэтому не может протекать через отверстия, закрытые клапанами.
По мере увеличения нагрузки по пару энергия паровых струй, выходящих из не закрытых клапанами отверстий, возрастает, и при некотором ее значении клапаны начинают открываться, и тем больше, чем выше нагрузка по пару. При этом живое сечение тарелки увеличивается.
Наличие установочного зазора между перфорированным листом и клапанами обеспечивает плавное их открытие. Пар начинает выходить из отверстий, находящихся под клапанами, и, отражаясь от поверхности клапанов, открытых под углом к плоскости перфорированного листа, изменяет направление. Выходящий из-под клапанов поток пара увлекает за собой жидкость в направлении сливного кармана, тем самым создавая направленное течение жидкости и исключая образование застойных зон. При снижении нагрузки по пару клапаны под действием собственной массы опускаются на плоскость перфорированного листа.
Окончательно вторичный пар в сепараторе очищается на насадке из колец Рашига, причем, проходя через нижнюю, заполненную водой, половину насадки, пар перемешивается с дистиллятом (эмульгирует) и хорошо отмывается от мельчайших капель концентрата. При прохождении верхней половины насадки за счет многократного изменения направления движения пара капельки влаги прилипают к поверхности колец Рашига и в виде пленки жидкости стекают вниз.
Для наблюдения за работой сепарационных устройств конструкций предусмотрены смотровые окна.
Принцип работы выпарного аппарата следующий: исходный раствор поступает в циркуляционный трубопровод, далее в нижнюю растворную камеру и затем в греющие трубки. В греющих трубах раствор нагревается и вскипает. Парожидкостная смесь поступает в сепаратор, где происходит ее разделение. Отделившийся раствор идет по циркуляционной трубе вновь в греющую камеру, где смешивается с исходным раствором.
Вторичный пар проходит последовательно через все паросепарационные устройства, где очищается от капель раствора, и направляется в конденсатор-дегазатор.
При наличии в ВУ доупаривателя часть упариваемого раствора с повышенным солесодержанием из циркуляционной трубы постоянно перетекает в доупариватель. Данное перетекание обеспечивается за счет более низкого расположения доупаривателя по отношению к выпарному аппарату – на один метр. Такое пространственное расположение оборудования предотвращает смешение более плотного концентрированного раствора доупаривателя с менее концентрированным раствором из выпарного аппарата.
При отсутствии в схеме доупаривателя после достижения конечной концентрации в выпарном аппарате упаренный раствор самотеком через штуцер циркуляционного трубопровода сливается:
для СВО-7 – в монжюс кубового остатка, откуда сжатым воздухом транспортируется в емкости временного хранения жидких радиоактивных отходов;
для СВО-6 – в бак «грязного» борного концентрата.
Краткие технические характеристики выпарного аппарата приводятся в табл. 3.1.
Т а б л и ц а 3.1
