- •1. Архитектура автоматизированной системы
- •1.1. Разновидности архитектур
- •1.1.1. Требования к архитектуре
- •1.1.2. Простейшая система
- •1.1.3. Распределенные системы автоматизации
- •1.1.4. Многоуровневая архитектура
- •1.2. Применение интернет-технологий
- •1.2.1. Проблемы и их решение
- •1.2.2. Основные понятия технологии интернета
- •1.2.3. Принципы управления через интернет
- •1.2.4. Микро веб-серверы
- •1.2.5. Примеры применения
- •1.3. Понятие открытой системы
- •1.3.1. Свойства открытых систем
- •Модульность
- •Платформенная независимость
- •Взаимозаменяемость
- •Интероперабельность (аппаратно-программная совместимость)
- •Масштабируемость (наращиваемость)
- •Интерфейс пользователя
- •Программная совместимость
- •1.3.3. Достоинства и недостатки
- •1.4. Заключение к главе "Архитектура автоматизированных систем"
- •Обзор публикаций
- •2. Промышленные сети и интерфейсы
- •2.1. Общие сведения о промышленных сетях
- •2.2. Модель osi
- •2.2.1. Физический уровень
- •2.2.2. Канальный уровень
- •2.2.3. Сетевой уровень
- •2.2.4. Транспортный уровень
- •2.2.5. Сеансовый уровень
- •2.2.6. Уровень представления
- •2.2.7. Прикладной уровень
- •2.2.8. Критика модели osi
- •2.3. Интерфейсы rs-485, rs-422 и rs-232
- •2.3.1. Принципы построения Дифференциальная передача сигнала
- •"Третье" состояние выходов
- •Четырехпроводной интерфейс
- •Режим приема эха
- •Заземление, гальваническая изоляция и защита от молнии
- •2.3.2. Стандартные параметры
- •2.3.3. Согласование линии с передатчиком и приемником
- •2.3.4. Топология сети на основе интерфейса rs-485
- •2.3.5. Устранение состояния неопределенности линии
- •2.3.6. Сквозные токи
- •2.3.7. Выбор кабеля
- •2.3.8. Расширение предельных возможностей
- •2.3.9. Интерфейсы rs-232 и rs-422
- •2.4. Интерфейс "токовая петля"
- •Аналоговая "токовая петля"
- •Цифровая "токовая тепля"
- •2.5. Hart-протокол
- •Принципы построения
- •Сеть на основе hart-протокола
- •Адресация
- •Команды hart
- •Язык описания устройств ddl
- •Разновидности hart
- •2.6.1. Физический уровень
- •Электрические соединения в сети can
- •Трансивер can
- •2.6.2. Канальный уровень
- •Адресация и доступ к шине
- •Достоверность передачи
- •Передача сообщений
- •Пауза между фреймами
- •Фильтрация сообщений
- •Валидация сообщений
- •2.6.3. Прикладной уровень: caNopen
- •Коммуникационные модели
- •2.6.4. Электронные спецификации устройств caNopen
- •2.7.1. Физический уровень
- •2.7.2. Канальный уровень Profibus dp
- •Коммуникационный профиль dp
- •Передача сообщений
- •2.7.3. Резервирование
- •2.7.4. Описание устройств
- •2.8.1. Физический уровень
- •2.8.2. Канальный уровень
- •Описание кадра (фрейма) протокола Modbus
- •Структура данных в режиме rtu
- •Структура Modbus rtu сообщения
- •Контроль ошибок
- •2.8.3. Прикладной уровень
- •Коды функций
- •Содержание поля данных
- •Список кодов Modbus
- •2.9. Промышленный Ethernet
- •2.9.1. Отличительные особенности
- •2.9.2. Физический уровень
- •Методы кодирования
- •Доступ к линии передачи
- •Коммутаторы
- •2.9.3. Канальный уровень
- •2.10. Протокол dcon
- •2.11. Беспроводные локальные сети
- •2.11.1. Проблемы беспроводных сетей и пути их решения
- •Зависимость плотности мощности от расстояния
- •Влияние интерференции волн
- •Источники помех
- •Широкополосная передача
- •Методы модуляции несущей
- •Другие особенности беспроводных каналов
- •Методы уменьшение количества ошибок в канале
- •Передача сообщений без подтверждения о получении
- •Использование пространственного разнесения антенн
- •Вопросы безопасности
- •Физический и канальный уровень
- •Модель передачи данных
- •Структура фреймов
- •Сетевой уровень
- •Уровень приложений
- •Физический и канальный уровень
- •Архитектура сети Wi-Fi
- •2.11.5. Сравнение беспроводных сетей
- •2.12. Сетевое оборудование
- •2.12.1. Повторители интерфейса
- •2.12.2. Концентраторы (хабы)
- •2.12.3. Преобразователи интерфейса
- •Преобразователь rs-232 - rs-485/422
- •Преобразователь rs-232 в оптоволоконный интерфейс
- •Преобразователь usb в rs-232, rs-485, rs-422
- •2.12.4. Адресуемые преобразователи интерфейса
- •2.12.5. Межсетевые шлюзы
- •2.12.6. Другое сетевое оборудование
- •Маршрутизаторы
- •Сетевые адаптеры
- •Коммутаторы
- •Мультиплексоры
- •Межсетевой экран
- •2.12.7. Кабели для промышленных сетей
- •2.13. Заключение к главе "Промышленные сети и интерфейсы"
- •3. Защита от помех
- •3.1. Источники помех
- •3.1.1. Характеристики помех
- •3.1.2. Помехи из сети электроснабжения
- •3.1.3. Молния и атмосферное электричество
- •3.1.4. Статическое электричество
- •3.1.5. Помехи через кондуктивные связи
- •3.1.6. Электромагнитные помехи
- •3.1.7. Другие типы помех
- •3.2. Заземление
- •3.2.1. Определения
- •3.2.2. Цели заземления
- •3.2.3. Защитное заземление зданий
- •3.2.4. Автономное заземление
- •3.2.5. Заземляющие проводники
- •3.2.6. Модель «земли»
- •3.2.7. Виды заземлений
- •Силовое заземление
- •Аналоговая и цифровая земля
- •«Плавающая» земля
- •3.3. Проводные каналы передачи сигналов
- •3.3.1. Источники сигнала
- •3.3.2. Приемники сигнала
- •3.3.3. Прием сигнала заземленного источника
- •3.3.4. Прием сигнала незаземленных источников
- •3.3.5. Дифференциальные каналы передачи сигнала
- •Токовый дифференциальный канал
- •Балансный канал
- •3.4. Паразитные связи
- •3.4.1. Модели компонентов систем автоматизации
- •3.4.2. Паразитные кондуктивные связи
- •3.4.3. Индуктивные и емкостные связи
- •3.5. Методы экранирования и заземления
- •3.5.1. Гальванически связанные цепи
- •3.5.2. Экранирование сигнальных кабелей
- •3.5.3. Гальванически развязанные цепи
- •3.5.4. Экраны кабелей на электрических подстанциях
- •3.5.5. Экраны кабелей для защиты от молнии
- •3.5.6. Заземление при дифференциальных измерениях
- •3.5.7. Интеллектуальные датчики
- •3.5.8. Монтажные шкафы
- •3.5.9. Распределенные системы управления
- •3.5.10. Чувствительные измерительные цепи
- •3.5.11. Исполнительное оборудование и приводы
- •Заземление в промышленных сетях
- •3.5.12. Заземление на взрывоопасных объектах
- •3.6. Гальваническая развязка
- •3.7. Защита промышленных сетей от молнии
- •3.7.1. Пути прохождения импульса молнии
- •3.7.2. Средства защиты
- •3.8. Стандарты и методы испытаний по эмс
- •3.9. Верификация заземления и экранирования
- •3.10. Заключение
- •Радикальные методы решения проблем заземления
- •Другие советы
3.3.5. Дифференциальные каналы передачи сигнала
Кардинальным средством устранения индуктивных и емкостных связей является применение источников сигнала с дифференциальным токовым выходом и приемников с низкоомным (токовым) дифференциальным входом (рис. 3.85). Токи источников тока на рис. 3.85 строго равны между собой и противоположно направлены. Индуктивная наводка здесь мала, поскольку информация передается в форме тока, а емкостная наводка мала, поскольку при хорошей симметрии линии передачи она является синфазной и подавляется входным дифференциальным приемником. Такой принцип передачи сигнала используется в интерфейсе "Токовая петля".
Токовый дифференциальный канал
Для получения высокого качества передачи сигнальные провода должны быть экранированы и выполнены в виде витой пары, чтобы обеспечить лучшую согласованность их продольных импедансов и импеданса на "землю". Различие в длине проводов и в частотных характеристиках их импедансов могут быть причиной появления помехи на высоких частотах.
Для получения высокой степени согласованности линий в витой паре лучше использовать провода, специально изготовленные и аттестованные для инструментальных индустриальных применений. Использование двух витых пар вместо одной, соединенных параллельно, позволяет снизить продольный импеданс проводов и повысить точность передачи сигнала.
Примером реализации дифференциального способа передачи токового сигнала может служить пара дифференциального токового передатчика SSM2142 и дифференциального приемника SSM2141 (Analog Devices), которые имеют коэффициент ослабления синфазного сигнала 100 дБ на частоте 60 Гц, и работают на нагрузку 600 Ом, создавая на ней максимальное падение напряжения 10В.
Для
предотвращения насыщения выходных
каскадов источников тока разностью
токов
,
которая возникает вследствие
технологического разброса параметров,
можно использовать способ, аналогичный
представленному на рис.
3.84.
Однако резисторы в данном случае должны
быть соединены с "землей" источника
сигнала.
Недостатком
токовых каналов передачи информации
является то, что в соответствии с
выражением (3.9) при бесконечно большом
сопротивлении источника и приемника
сигнала (относительно земли) напряжение
емкостной наводки является максимальным.
Применение резисторов для отвода тока
помехи на землю (рис.
3.84)
улучшает ситуацию, однако эти резисторы
не могут быть выбраны очень малыми,
поскольку при этом увеличивается влияние
их рассогласования на погрешность
передачи тока. Вторым недостатком
является низкое быстродействие,
ограниченное временем заряда емкости
кабеля малым током источников
.
-
Рис. 3.85. Дифференциальный источник и приемник тока - наилучшее решение проблемы качественной передачи сигнала
Балансный канал
Наиболее совершенной на настоящий момент системой передачи сигналов является балансная цепь, реализованная в интерфейсах RS-485 и CAN (рис. 3.86). В ее основе лежат следующие принципы:
применение балансного источника сигнала;
применение витой пары с идентичными характеристиками проводов;
применение дифференциального приемника сигнала;
передача мощности (а не тока или напряжения).
Идея, положенная в основу балансного канала передачи электрических сигналов, состоит в компенсации индуктивных и емкостных наводок и в ослаблении кондуктивных. Для обеспечения хорошей компенсации помех в дифференциальном приемнике сигнала они должны быть одинаковы на обоих входах дифференциального усилителя. Для этого:
источник сигнала должен иметь идентичные выходные сопротивления по обоим выходам как на постоянном токе, так и во всем диапазоне частот передаваемых сигналов;
линия связи (витая пара, лучше экранированная) должна иметь одинаковые для обоих проводов пары продольные сопротивление и индуктивность (для идентичности индуктивных наводок);
витая пара должна иметь одинаковые емкости на землю для обоих проводов пары (для идентичности емкостных наводок);
дифференциальный приемник должен иметь одинаковые частотные характеристики по обоим входам и высокую точность операции вычитания.
Для хорошей компенсации помех дифференциальный приемник должен иметь строго одинаковые коэффициенты передачи по обеим каналам и высокую точность операции вычитания (см. выше). Для подавления синфазной помехи приемник должен иметь большой коэффициент подавления синфазного сигнала. Помехоустойчивость канала улучшается также благодаря тому, что балансный передатчик позволяет повысить в 2 раза размах передаваемого сигнала (см. рис. 3.75).
Перечисленные принципы успешно реализованы в интерфейсе RS-485, чем и объясняется его высокая популярность.
Интерфейс CAN отличается от RS-485 тем, что рецессивное состояние в нем реализовано с помощью транзисторного ключа, который отключает линию связи от передатчика. При этом внутреннее сопротивление источника скачком изменяется от низкого на бесконечно большое, т.е. передатчик переходит в режим передачи тока нулевой величины. Поэтому при передаче логической единицы (доминантного состояния) передатчик является источником напряжения и подвержен влиянию преимущественно индуктивных наводок, а при передаче логического нуля (рецессивного состояния) более подвержен влиянию емкостных наводок.
|
Рис. 3.86. Балансная схема передачи дифференциального сигнала |
