- •1. Архитектура автоматизированной системы
- •1.1. Разновидности архитектур
- •1.1.1. Требования к архитектуре
- •1.1.2. Простейшая система
- •1.1.3. Распределенные системы автоматизации
- •1.1.4. Многоуровневая архитектура
- •1.2. Применение интернет-технологий
- •1.2.1. Проблемы и их решение
- •1.2.2. Основные понятия технологии интернета
- •1.2.3. Принципы управления через интернет
- •1.2.4. Микро веб-серверы
- •1.2.5. Примеры применения
- •1.3. Понятие открытой системы
- •1.3.1. Свойства открытых систем
- •Модульность
- •Платформенная независимость
- •Взаимозаменяемость
- •Интероперабельность (аппаратно-программная совместимость)
- •Масштабируемость (наращиваемость)
- •Интерфейс пользователя
- •Программная совместимость
- •1.3.3. Достоинства и недостатки
- •1.4. Заключение к главе "Архитектура автоматизированных систем"
- •Обзор публикаций
- •2. Промышленные сети и интерфейсы
- •2.1. Общие сведения о промышленных сетях
- •2.2. Модель osi
- •2.2.1. Физический уровень
- •2.2.2. Канальный уровень
- •2.2.3. Сетевой уровень
- •2.2.4. Транспортный уровень
- •2.2.5. Сеансовый уровень
- •2.2.6. Уровень представления
- •2.2.7. Прикладной уровень
- •2.2.8. Критика модели osi
- •2.3. Интерфейсы rs-485, rs-422 и rs-232
- •2.3.1. Принципы построения Дифференциальная передача сигнала
- •"Третье" состояние выходов
- •Четырехпроводной интерфейс
- •Режим приема эха
- •Заземление, гальваническая изоляция и защита от молнии
- •2.3.2. Стандартные параметры
- •2.3.3. Согласование линии с передатчиком и приемником
- •2.3.4. Топология сети на основе интерфейса rs-485
- •2.3.5. Устранение состояния неопределенности линии
- •2.3.6. Сквозные токи
- •2.3.7. Выбор кабеля
- •2.3.8. Расширение предельных возможностей
- •2.3.9. Интерфейсы rs-232 и rs-422
- •2.4. Интерфейс "токовая петля"
- •Аналоговая "токовая петля"
- •Цифровая "токовая тепля"
- •2.5. Hart-протокол
- •Принципы построения
- •Сеть на основе hart-протокола
- •Адресация
- •Команды hart
- •Язык описания устройств ddl
- •Разновидности hart
- •2.6.1. Физический уровень
- •Электрические соединения в сети can
- •Трансивер can
- •2.6.2. Канальный уровень
- •Адресация и доступ к шине
- •Достоверность передачи
- •Передача сообщений
- •Пауза между фреймами
- •Фильтрация сообщений
- •Валидация сообщений
- •2.6.3. Прикладной уровень: caNopen
- •Коммуникационные модели
- •2.6.4. Электронные спецификации устройств caNopen
- •2.7.1. Физический уровень
- •2.7.2. Канальный уровень Profibus dp
- •Коммуникационный профиль dp
- •Передача сообщений
- •2.7.3. Резервирование
- •2.7.4. Описание устройств
- •2.8.1. Физический уровень
- •2.8.2. Канальный уровень
- •Описание кадра (фрейма) протокола Modbus
- •Структура данных в режиме rtu
- •Структура Modbus rtu сообщения
- •Контроль ошибок
- •2.8.3. Прикладной уровень
- •Коды функций
- •Содержание поля данных
- •Список кодов Modbus
- •2.9. Промышленный Ethernet
- •2.9.1. Отличительные особенности
- •2.9.2. Физический уровень
- •Методы кодирования
- •Доступ к линии передачи
- •Коммутаторы
- •2.9.3. Канальный уровень
- •2.10. Протокол dcon
- •2.11. Беспроводные локальные сети
- •2.11.1. Проблемы беспроводных сетей и пути их решения
- •Зависимость плотности мощности от расстояния
- •Влияние интерференции волн
- •Источники помех
- •Широкополосная передача
- •Методы модуляции несущей
- •Другие особенности беспроводных каналов
- •Методы уменьшение количества ошибок в канале
- •Передача сообщений без подтверждения о получении
- •Использование пространственного разнесения антенн
- •Вопросы безопасности
- •Физический и канальный уровень
- •Модель передачи данных
- •Структура фреймов
- •Сетевой уровень
- •Уровень приложений
- •Физический и канальный уровень
- •Архитектура сети Wi-Fi
- •2.11.5. Сравнение беспроводных сетей
- •2.12. Сетевое оборудование
- •2.12.1. Повторители интерфейса
- •2.12.2. Концентраторы (хабы)
- •2.12.3. Преобразователи интерфейса
- •Преобразователь rs-232 - rs-485/422
- •Преобразователь rs-232 в оптоволоконный интерфейс
- •Преобразователь usb в rs-232, rs-485, rs-422
- •2.12.4. Адресуемые преобразователи интерфейса
- •2.12.5. Межсетевые шлюзы
- •2.12.6. Другое сетевое оборудование
- •Маршрутизаторы
- •Сетевые адаптеры
- •Коммутаторы
- •Мультиплексоры
- •Межсетевой экран
- •2.12.7. Кабели для промышленных сетей
- •2.13. Заключение к главе "Промышленные сети и интерфейсы"
- •3. Защита от помех
- •3.1. Источники помех
- •3.1.1. Характеристики помех
- •3.1.2. Помехи из сети электроснабжения
- •3.1.3. Молния и атмосферное электричество
- •3.1.4. Статическое электричество
- •3.1.5. Помехи через кондуктивные связи
- •3.1.6. Электромагнитные помехи
- •3.1.7. Другие типы помех
- •3.2. Заземление
- •3.2.1. Определения
- •3.2.2. Цели заземления
- •3.2.3. Защитное заземление зданий
- •3.2.4. Автономное заземление
- •3.2.5. Заземляющие проводники
- •3.2.6. Модель «земли»
- •3.2.7. Виды заземлений
- •Силовое заземление
- •Аналоговая и цифровая земля
- •«Плавающая» земля
- •3.3. Проводные каналы передачи сигналов
- •3.3.1. Источники сигнала
- •3.3.2. Приемники сигнала
- •3.3.3. Прием сигнала заземленного источника
- •3.3.4. Прием сигнала незаземленных источников
- •3.3.5. Дифференциальные каналы передачи сигнала
- •Токовый дифференциальный канал
- •Балансный канал
- •3.4. Паразитные связи
- •3.4.1. Модели компонентов систем автоматизации
- •3.4.2. Паразитные кондуктивные связи
- •3.4.3. Индуктивные и емкостные связи
- •3.5. Методы экранирования и заземления
- •3.5.1. Гальванически связанные цепи
- •3.5.2. Экранирование сигнальных кабелей
- •3.5.3. Гальванически развязанные цепи
- •3.5.4. Экраны кабелей на электрических подстанциях
- •3.5.5. Экраны кабелей для защиты от молнии
- •3.5.6. Заземление при дифференциальных измерениях
- •3.5.7. Интеллектуальные датчики
- •3.5.8. Монтажные шкафы
- •3.5.9. Распределенные системы управления
- •3.5.10. Чувствительные измерительные цепи
- •3.5.11. Исполнительное оборудование и приводы
- •Заземление в промышленных сетях
- •3.5.12. Заземление на взрывоопасных объектах
- •3.6. Гальваническая развязка
- •3.7. Защита промышленных сетей от молнии
- •3.7.1. Пути прохождения импульса молнии
- •3.7.2. Средства защиты
- •3.8. Стандарты и методы испытаний по эмс
- •3.9. Верификация заземления и экранирования
- •3.10. Заключение
- •Радикальные методы решения проблем заземления
- •Другие советы
Физический и канальный уровень
Физический уровень модели OSI обеспечивает интерфейс между стеком протоколов и средой передачи информации (эфиром). Физический (PHY) и канальный (MAC) уровни модели OSI (Денисенко) определены в стандарте IEEE 802.15.4. Они имеют следующие основные характеристики:
скорость передачи: 250 кбит/с;
короткий 16-битный адрес или расширенный длиной 64-бита;
выделение интервала времени для передачи информации каждый узлом;
метод доступа к каналу типа CSMA/ CA;
протокол обмена с уведомлением о получении;
малое потребление мощности;
контроль уровня энергии;
наличие индикатора качества связи;
16 каналов в диапазоне 2,45 ГГц.
Частоты 868 и 902 МГц, предусмотренные стандартом, в России не применяются и поэтому в дальнейшем не упоминаются.
Стандарт IEEE 802.15.4 использует модуляцию типа OQPSK - "Offset-Quadrature Phase-Shift Keying" - "смещенная квадратурная фазовая манипуляция".
Основным назначением физического уровня является прием и передача данных через радиоканал. Здесь также измеряется мощность радиосигнала, оценивается качество связи и чистота канала, осуществляется выбор канала.
Подуровень MAC управляет маячком, доступом к каналу, выделяет гарантированные слоты времени, проверяет достоверность передачи фреймов, передает фрейм подтверждения о получении, выполняет часть работы по обеспечению защиты информации.
Стандарт допускает опциональное использование суперфреймовой структуры сообщений (рис. 2.38). Формат суперфрейма определяется сетевым координатором. Суперфрейм с двух сторон ограничивается маячками, делится на 16 равных по длине слотов и посылается сетевым координатором. Маячок помещается на место первого слота каждого суперфрейма. Координатор может отключить режим сообщений с маячками. Маячки используются для синхронизации присоединенных устройств, для идентификации сети и для описания структуры суперфрейма. Любые устройства, желающие начать процесс коммуникации в промежуток времени между двумя маячками, должны использовать слотовый механизм доступа CSMA/CA. Передача сообщений должна быть закончена до прихода следующего маячка.
-
Рис. 2.38. Структура суперфрейма с гарантированными временными слотами
IEEE 802.15.4 устанавливает два механизма доступа к каналу CSMA/ CA, в зависимости от типа конфигурации сети. В сети без маячков используется обычный (бесслотовый) механизм доступа CSMA/ CA. Каждый раз, когда устройство собирается начать передачу, оно должно выдержать паузу случайной величины после того, как канал освободится. Случайная задержка нужна потому, что очень вероятно, что многие устройства сети ждут освобождения канала и поэтому после его освобождения могут начать передачу одновременно. Если канал занят, то устройство может повторить попытку после повторной случайной задержки. Фреймы подтверждения о получении посылаются сразу, без использования описанного алгоритма.
В сети с маячками используется слотовый (тактированный) механизм доступа CSMA/CA, в котором начало временного слота должно совпадать с границей суперфреймасетевого координатора, т.е. начало слота для каждого устройства должно быть синхронизировано с началом передачи маячка сетевым координатором. Поскольку устройство не может начать передачу, пока не найдет маячок, а маячки рассылаются только сетевым координатором, то сетевой координатор с помощью маячков выполняет тактирование актов обмена во всей сети. При этом PHY уровень должен обеспечить, чтобы все передачи в сети начинались одновременно с началом слотов. Введение описанной синхронизации позволяет уменьшить вероятность одновременной передачи сообщений несколькими узлами сети.
Для устройств, которые требуют срочной доставки или большой пропускной способности канала, сетевой координатор может зарезервировать часть суперфрейма, в котором будет отсутствовать конкуренция за канал (рис. 2.38), поскольку в это время сетевой координатор запрещает любую передачу всем другим устройствам. Эта часть слотов суперфрейма называется гарантированными временными слотами (Guaranteed Time Slots - GTSs).
