- •1. Архитектура автоматизированной системы
- •1.1. Разновидности архитектур
- •1.1.1. Требования к архитектуре
- •1.1.2. Простейшая система
- •1.1.3. Распределенные системы автоматизации
- •1.1.4. Многоуровневая архитектура
- •1.2. Применение интернет-технологий
- •1.2.1. Проблемы и их решение
- •1.2.2. Основные понятия технологии интернета
- •1.2.3. Принципы управления через интернет
- •1.2.4. Микро веб-серверы
- •1.2.5. Примеры применения
- •1.3. Понятие открытой системы
- •1.3.1. Свойства открытых систем
- •Модульность
- •Платформенная независимость
- •Взаимозаменяемость
- •Интероперабельность (аппаратно-программная совместимость)
- •Масштабируемость (наращиваемость)
- •Интерфейс пользователя
- •Программная совместимость
- •1.3.3. Достоинства и недостатки
- •1.4. Заключение к главе "Архитектура автоматизированных систем"
- •Обзор публикаций
- •2. Промышленные сети и интерфейсы
- •2.1. Общие сведения о промышленных сетях
- •2.2. Модель osi
- •2.2.1. Физический уровень
- •2.2.2. Канальный уровень
- •2.2.3. Сетевой уровень
- •2.2.4. Транспортный уровень
- •2.2.5. Сеансовый уровень
- •2.2.6. Уровень представления
- •2.2.7. Прикладной уровень
- •2.2.8. Критика модели osi
- •2.3. Интерфейсы rs-485, rs-422 и rs-232
- •2.3.1. Принципы построения Дифференциальная передача сигнала
- •"Третье" состояние выходов
- •Четырехпроводной интерфейс
- •Режим приема эха
- •Заземление, гальваническая изоляция и защита от молнии
- •2.3.2. Стандартные параметры
- •2.3.3. Согласование линии с передатчиком и приемником
- •2.3.4. Топология сети на основе интерфейса rs-485
- •2.3.5. Устранение состояния неопределенности линии
- •2.3.6. Сквозные токи
- •2.3.7. Выбор кабеля
- •2.3.8. Расширение предельных возможностей
- •2.3.9. Интерфейсы rs-232 и rs-422
- •2.4. Интерфейс "токовая петля"
- •Аналоговая "токовая петля"
- •Цифровая "токовая тепля"
- •2.5. Hart-протокол
- •Принципы построения
- •Сеть на основе hart-протокола
- •Адресация
- •Команды hart
- •Язык описания устройств ddl
- •Разновидности hart
- •2.6.1. Физический уровень
- •Электрические соединения в сети can
- •Трансивер can
- •2.6.2. Канальный уровень
- •Адресация и доступ к шине
- •Достоверность передачи
- •Передача сообщений
- •Пауза между фреймами
- •Фильтрация сообщений
- •Валидация сообщений
- •2.6.3. Прикладной уровень: caNopen
- •Коммуникационные модели
- •2.6.4. Электронные спецификации устройств caNopen
- •2.7.1. Физический уровень
- •2.7.2. Канальный уровень Profibus dp
- •Коммуникационный профиль dp
- •Передача сообщений
- •2.7.3. Резервирование
- •2.7.4. Описание устройств
- •2.8.1. Физический уровень
- •2.8.2. Канальный уровень
- •Описание кадра (фрейма) протокола Modbus
- •Структура данных в режиме rtu
- •Структура Modbus rtu сообщения
- •Контроль ошибок
- •2.8.3. Прикладной уровень
- •Коды функций
- •Содержание поля данных
- •Список кодов Modbus
- •2.9. Промышленный Ethernet
- •2.9.1. Отличительные особенности
- •2.9.2. Физический уровень
- •Методы кодирования
- •Доступ к линии передачи
- •Коммутаторы
- •2.9.3. Канальный уровень
- •2.10. Протокол dcon
- •2.11. Беспроводные локальные сети
- •2.11.1. Проблемы беспроводных сетей и пути их решения
- •Зависимость плотности мощности от расстояния
- •Влияние интерференции волн
- •Источники помех
- •Широкополосная передача
- •Методы модуляции несущей
- •Другие особенности беспроводных каналов
- •Методы уменьшение количества ошибок в канале
- •Передача сообщений без подтверждения о получении
- •Использование пространственного разнесения антенн
- •Вопросы безопасности
- •Физический и канальный уровень
- •Модель передачи данных
- •Структура фреймов
- •Сетевой уровень
- •Уровень приложений
- •Физический и канальный уровень
- •Архитектура сети Wi-Fi
- •2.11.5. Сравнение беспроводных сетей
- •2.12. Сетевое оборудование
- •2.12.1. Повторители интерфейса
- •2.12.2. Концентраторы (хабы)
- •2.12.3. Преобразователи интерфейса
- •Преобразователь rs-232 - rs-485/422
- •Преобразователь rs-232 в оптоволоконный интерфейс
- •Преобразователь usb в rs-232, rs-485, rs-422
- •2.12.4. Адресуемые преобразователи интерфейса
- •2.12.5. Межсетевые шлюзы
- •2.12.6. Другое сетевое оборудование
- •Маршрутизаторы
- •Сетевые адаптеры
- •Коммутаторы
- •Мультиплексоры
- •Межсетевой экран
- •2.12.7. Кабели для промышленных сетей
- •2.13. Заключение к главе "Промышленные сети и интерфейсы"
- •3. Защита от помех
- •3.1. Источники помех
- •3.1.1. Характеристики помех
- •3.1.2. Помехи из сети электроснабжения
- •3.1.3. Молния и атмосферное электричество
- •3.1.4. Статическое электричество
- •3.1.5. Помехи через кондуктивные связи
- •3.1.6. Электромагнитные помехи
- •3.1.7. Другие типы помех
- •3.2. Заземление
- •3.2.1. Определения
- •3.2.2. Цели заземления
- •3.2.3. Защитное заземление зданий
- •3.2.4. Автономное заземление
- •3.2.5. Заземляющие проводники
- •3.2.6. Модель «земли»
- •3.2.7. Виды заземлений
- •Силовое заземление
- •Аналоговая и цифровая земля
- •«Плавающая» земля
- •3.3. Проводные каналы передачи сигналов
- •3.3.1. Источники сигнала
- •3.3.2. Приемники сигнала
- •3.3.3. Прием сигнала заземленного источника
- •3.3.4. Прием сигнала незаземленных источников
- •3.3.5. Дифференциальные каналы передачи сигнала
- •Токовый дифференциальный канал
- •Балансный канал
- •3.4. Паразитные связи
- •3.4.1. Модели компонентов систем автоматизации
- •3.4.2. Паразитные кондуктивные связи
- •3.4.3. Индуктивные и емкостные связи
- •3.5. Методы экранирования и заземления
- •3.5.1. Гальванически связанные цепи
- •3.5.2. Экранирование сигнальных кабелей
- •3.5.3. Гальванически развязанные цепи
- •3.5.4. Экраны кабелей на электрических подстанциях
- •3.5.5. Экраны кабелей для защиты от молнии
- •3.5.6. Заземление при дифференциальных измерениях
- •3.5.7. Интеллектуальные датчики
- •3.5.8. Монтажные шкафы
- •3.5.9. Распределенные системы управления
- •3.5.10. Чувствительные измерительные цепи
- •3.5.11. Исполнительное оборудование и приводы
- •Заземление в промышленных сетях
- •3.5.12. Заземление на взрывоопасных объектах
- •3.6. Гальваническая развязка
- •3.7. Защита промышленных сетей от молнии
- •3.7.1. Пути прохождения импульса молнии
- •3.7.2. Средства защиты
- •3.8. Стандарты и методы испытаний по эмс
- •3.9. Верификация заземления и экранирования
- •3.10. Заключение
- •Радикальные методы решения проблем заземления
- •Другие советы
Методы модуляции несущей
Идея
модуляции состоит в том, чтобы перенести
спектр информационного сигнала в область
высоких частот, в нашем случае в диапазон
2,4 ГГц, что позволит передать его с
помощью электромагнитной волны.
Электромагнитные волны возбуждаются
в антенне током синусоидальной формы
,
который называется несущим колебанием
или просто несущей.
По крайней мере один из параметров
несущей
может зависеть от времени:
,
,
.
Форма этой зависимости соответствует
форме сигнала, который нужно передать
с помощью радиоканала. Процесс управления
параметрами несущей называется модуляцией.
Частным случаем модуляции
является манипуляция,
когда модулированные параметры изменяются
скачкообразно между двумя их значениями.
В зависимости от того, какой параметр
становится зависимым от времени,
модуляция называется амплитудной, фазовой или частотной.
Возможны также комбинированные способы
модуляции: амплитудно-фазовая,
фазо-частотная и т. п.
Количество
информации, которое может быть внесено
в сигнал, можно увеличить, используя
несколько одновременно изменяемых
параметров. В цифровых системах передачи
модулируемые параметры изменяются
дискретно. Поэтому количество информации,
приходящееся на бодовый
интервал,
можно увеличить, увеличивая количество
дискретных уровней. Бодовым интервалом
называют временной интервал, в течение
которого параметры
,
,
остаются
постоянными.
Поскольку
,
т. е. изменение фазы можно представить
с помощью изменений амплитуды
синусоидальной и косинусоидальной
компоненты, то параметры исходного
синусоидального колебания можно
представить на плоскости с помощью
графика (рис. 2.35),
у которого по оси абсцисс отложена
амплитуда синусоидальной компоненты
(т. е. величина
,
ее называют синфазной
компонентой и
обозначают на графике буквой I, от
слова In-phase),
по оси ординат - амплитуда косинусоидальной
компоненты, т. е.
,
которую называют квадратурной и
обозначают буквой Q, от слова Quadrature.
Полученный таким способом график
называется сигнальным
созвездием (рис.
2.35).
Он совпадает с графиком, изображающим
синусоидальное колебание на комплексной
плоскости.
При амплитудной модуляции фаза не изменяется, поэтому все точки графика располагаются на оси абсцисс. При фазовой модуляции амплитуда постоянная, поэтому все точки графика лежат на окружности, радиус которой равен амплитуде колебания.
При
двоичной фазовой модуляции (BPSK -
"Binary Phase Shift Keying") фаза принимает
только два дискретных значения: 0 и
,
поэтому сигнальное созвездие состоит
из двух точек, расположенных на оси
абсцисс. Эта разновидность фазовой
манипуляции является наиболее
помехоустойчивой.
Модификацией этого метода является дифференциальная двоичная фазовая манипуляция (DBPSK - Differential BPSK), когда логическим значениям "0" или "1" соответствуют не абсолютные значения фазы, а изменение фазы относительно предыдущего ее значения. Например, если фаза сигнала была равна 0, то для кодирования значения "1" ее изменяют на 180˚, а для кодирования логического "0" фазу оставляют прежней. Аналогичная идея используется в методе NRZI-кодирования (рис. 2.28), когда логической единице соответствует изменение уровня сигнала, а логическому нулю - ее отсутствие.
Если принимает значения 0 или 1 и при этом принимает значения 1 и 0, то такая модуляция называется квадратурной фазовой манипуляцией QPSK (Quadrature Phase-Shift Keying) и позволяет получить 4 состояния передаваемого сигнала в пределах бодового интервала. Сигнальное созвездие QPSK показано на рис.2.35.
Модификацией QPSK является DQPSK-модуляция (Differential QPSK), при которой, аналогично DBPSK, кодируется не величина фазы, а ее изменение относительно предыдущего значения. Изменение фазы на 0˚ кодируется как "00", изменение на 90˚ кодируется как "01", на 180˚ - как "11", на 360˚ как "10".
Помехоустойчивость метода модуляции можно оценить по расстоянию между точками сигнального созвездия - это расстояние характеризует амплитуду и фазу помехи, которая достаточна, чтобы был принят ошибочный сигнал. Поэтому при проектировании схем модуляции точки сигнального созвездия выбирают таким образом, чтобы расстояние от любой точки до ее соседей было одинаковым для всех точек созвездия. При этом достигается одинаковая помехоустойчивость для любых передаваемых чисел.
-
Рис. 2.35. Сигнальное созвездие для QPSK-модуляции
Рис. 2.36. Сигнальное созвездие для 16-QAM-модуляции
Беспроводные сети используют также амплитудно-фазовую модуляцию 16-QAM (рис. 2.36) и 64-QAM, когда изменяется не только фаза, но и амплитуда колебания. Сигнал может принимать соответственно 16 и 64 бита информации на бодовый интервал, что увеличивает скорость передачи, но за счет снижения помехоустойчивости.
