- •1. Архитектура автоматизированной системы
- •1.1. Разновидности архитектур
- •1.1.1. Требования к архитектуре
- •1.1.2. Простейшая система
- •1.1.3. Распределенные системы автоматизации
- •1.1.4. Многоуровневая архитектура
- •1.2. Применение интернет-технологий
- •1.2.1. Проблемы и их решение
- •1.2.2. Основные понятия технологии интернета
- •1.2.3. Принципы управления через интернет
- •1.2.4. Микро веб-серверы
- •1.2.5. Примеры применения
- •1.3. Понятие открытой системы
- •1.3.1. Свойства открытых систем
- •Модульность
- •Платформенная независимость
- •Взаимозаменяемость
- •Интероперабельность (аппаратно-программная совместимость)
- •Масштабируемость (наращиваемость)
- •Интерфейс пользователя
- •Программная совместимость
- •1.3.3. Достоинства и недостатки
- •1.4. Заключение к главе "Архитектура автоматизированных систем"
- •Обзор публикаций
- •2. Промышленные сети и интерфейсы
- •2.1. Общие сведения о промышленных сетях
- •2.2. Модель osi
- •2.2.1. Физический уровень
- •2.2.2. Канальный уровень
- •2.2.3. Сетевой уровень
- •2.2.4. Транспортный уровень
- •2.2.5. Сеансовый уровень
- •2.2.6. Уровень представления
- •2.2.7. Прикладной уровень
- •2.2.8. Критика модели osi
- •2.3. Интерфейсы rs-485, rs-422 и rs-232
- •2.3.1. Принципы построения Дифференциальная передача сигнала
- •"Третье" состояние выходов
- •Четырехпроводной интерфейс
- •Режим приема эха
- •Заземление, гальваническая изоляция и защита от молнии
- •2.3.2. Стандартные параметры
- •2.3.3. Согласование линии с передатчиком и приемником
- •2.3.4. Топология сети на основе интерфейса rs-485
- •2.3.5. Устранение состояния неопределенности линии
- •2.3.6. Сквозные токи
- •2.3.7. Выбор кабеля
- •2.3.8. Расширение предельных возможностей
- •2.3.9. Интерфейсы rs-232 и rs-422
- •2.4. Интерфейс "токовая петля"
- •Аналоговая "токовая петля"
- •Цифровая "токовая тепля"
- •2.5. Hart-протокол
- •Принципы построения
- •Сеть на основе hart-протокола
- •Адресация
- •Команды hart
- •Язык описания устройств ddl
- •Разновидности hart
- •2.6.1. Физический уровень
- •Электрические соединения в сети can
- •Трансивер can
- •2.6.2. Канальный уровень
- •Адресация и доступ к шине
- •Достоверность передачи
- •Передача сообщений
- •Пауза между фреймами
- •Фильтрация сообщений
- •Валидация сообщений
- •2.6.3. Прикладной уровень: caNopen
- •Коммуникационные модели
- •2.6.4. Электронные спецификации устройств caNopen
- •2.7.1. Физический уровень
- •2.7.2. Канальный уровень Profibus dp
- •Коммуникационный профиль dp
- •Передача сообщений
- •2.7.3. Резервирование
- •2.7.4. Описание устройств
- •2.8.1. Физический уровень
- •2.8.2. Канальный уровень
- •Описание кадра (фрейма) протокола Modbus
- •Структура данных в режиме rtu
- •Структура Modbus rtu сообщения
- •Контроль ошибок
- •2.8.3. Прикладной уровень
- •Коды функций
- •Содержание поля данных
- •Список кодов Modbus
- •2.9. Промышленный Ethernet
- •2.9.1. Отличительные особенности
- •2.9.2. Физический уровень
- •Методы кодирования
- •Доступ к линии передачи
- •Коммутаторы
- •2.9.3. Канальный уровень
- •2.10. Протокол dcon
- •2.11. Беспроводные локальные сети
- •2.11.1. Проблемы беспроводных сетей и пути их решения
- •Зависимость плотности мощности от расстояния
- •Влияние интерференции волн
- •Источники помех
- •Широкополосная передача
- •Методы модуляции несущей
- •Другие особенности беспроводных каналов
- •Методы уменьшение количества ошибок в канале
- •Передача сообщений без подтверждения о получении
- •Использование пространственного разнесения антенн
- •Вопросы безопасности
- •Физический и канальный уровень
- •Модель передачи данных
- •Структура фреймов
- •Сетевой уровень
- •Уровень приложений
- •Физический и канальный уровень
- •Архитектура сети Wi-Fi
- •2.11.5. Сравнение беспроводных сетей
- •2.12. Сетевое оборудование
- •2.12.1. Повторители интерфейса
- •2.12.2. Концентраторы (хабы)
- •2.12.3. Преобразователи интерфейса
- •Преобразователь rs-232 - rs-485/422
- •Преобразователь rs-232 в оптоволоконный интерфейс
- •Преобразователь usb в rs-232, rs-485, rs-422
- •2.12.4. Адресуемые преобразователи интерфейса
- •2.12.5. Межсетевые шлюзы
- •2.12.6. Другое сетевое оборудование
- •Маршрутизаторы
- •Сетевые адаптеры
- •Коммутаторы
- •Мультиплексоры
- •Межсетевой экран
- •2.12.7. Кабели для промышленных сетей
- •2.13. Заключение к главе "Промышленные сети и интерфейсы"
- •3. Защита от помех
- •3.1. Источники помех
- •3.1.1. Характеристики помех
- •3.1.2. Помехи из сети электроснабжения
- •3.1.3. Молния и атмосферное электричество
- •3.1.4. Статическое электричество
- •3.1.5. Помехи через кондуктивные связи
- •3.1.6. Электромагнитные помехи
- •3.1.7. Другие типы помех
- •3.2. Заземление
- •3.2.1. Определения
- •3.2.2. Цели заземления
- •3.2.3. Защитное заземление зданий
- •3.2.4. Автономное заземление
- •3.2.5. Заземляющие проводники
- •3.2.6. Модель «земли»
- •3.2.7. Виды заземлений
- •Силовое заземление
- •Аналоговая и цифровая земля
- •«Плавающая» земля
- •3.3. Проводные каналы передачи сигналов
- •3.3.1. Источники сигнала
- •3.3.2. Приемники сигнала
- •3.3.3. Прием сигнала заземленного источника
- •3.3.4. Прием сигнала незаземленных источников
- •3.3.5. Дифференциальные каналы передачи сигнала
- •Токовый дифференциальный канал
- •Балансный канал
- •3.4. Паразитные связи
- •3.4.1. Модели компонентов систем автоматизации
- •3.4.2. Паразитные кондуктивные связи
- •3.4.3. Индуктивные и емкостные связи
- •3.5. Методы экранирования и заземления
- •3.5.1. Гальванически связанные цепи
- •3.5.2. Экранирование сигнальных кабелей
- •3.5.3. Гальванически развязанные цепи
- •3.5.4. Экраны кабелей на электрических подстанциях
- •3.5.5. Экраны кабелей для защиты от молнии
- •3.5.6. Заземление при дифференциальных измерениях
- •3.5.7. Интеллектуальные датчики
- •3.5.8. Монтажные шкафы
- •3.5.9. Распределенные системы управления
- •3.5.10. Чувствительные измерительные цепи
- •3.5.11. Исполнительное оборудование и приводы
- •Заземление в промышленных сетях
- •3.5.12. Заземление на взрывоопасных объектах
- •3.6. Гальваническая развязка
- •3.7. Защита промышленных сетей от молнии
- •3.7.1. Пути прохождения импульса молнии
- •3.7.2. Средства защиты
- •3.8. Стандарты и методы испытаний по эмс
- •3.9. Верификация заземления и экранирования
- •3.10. Заключение
- •Радикальные методы решения проблем заземления
- •Другие советы
Влияние интерференции волн
Электромагнитная волна передающей станции на пути следования испытывает интерференцию, дифракцию, отражение, преломление и рассеяние. Поэтому в точке приема волна является суперпозицией множества волн, имеющих разные фазы и направления волнового вектора. Наложение волн приводит к интерференции, которая может быть конструктивной (когда сигнал в точке приема усиливается) или деструктивной (если сигнал ослабляется - эффект "замирания"). Деструктивная интерференция приводит к нескольким отрицательным следствиям. Во-первых, сигнал в точке приема может оказаться ниже порога чувствительности приемника, что приведет к потере связи. Во-вторых, при движущемся источнике или приемнике в точке приема могут быть многократные смены сильного и слабого сигнала, что может привести к потере нескольких бит информации или уменьшению скорости передачи за счет повторных передач кадров с ошибкой. В-третьих, если разность времени задержки волн, прошедших разными путями, превысит длительность символа, соседние символы в сообщении могут накладываться друг на друга, вызывая эффект межсимвольной интерференции.
Источники помех
Существуют также другие причины искажений передаваемого сигнала: паразитное взаимовлияние соседних каналов; эффект Доплера, помехи от работающих двигателей, разряды статического электричества, и др. Это может привести к потере пакета, повторной передаче и, как следствие, непредвиденной задержке в канале. Интенсивность потока ошибок зависит от мощности источников помех, типа модуляции и мощности передатчика, от частотного диапазона, других причин и обычно изменяется с течением времени.
Измерения,
выполненные в работе [Willig]
показали, что чипсет, соответствующий
стандарту IEEE 803.11b, в индустриальном
окружении дает поток кратковременных
ошибок величиной
при
скорости передачи 2 Мбит/с и использовании
квадратурной фазовой модуляции QPSK (Quaternary
Phase Shift Keying). Кроме того, в процессе
измерений эпизодически возникали
периоды продолжительностью до 1 мин.,
когда потери данных доходили до 10% и
даже 80%. Аналогичные результаты наблюдались
и в других экспериментах.
Следствием помех в канале может быть не только потеря данных или замедление скорости передачи, но и "проблема пространственной непротиворечивости". Она заключается в следующем. Когда система использует широковещательный режим передачи без уведомления о получении, предполагается, что все приемники должны получить одни и те же данные одновременно. Однако вследствие ошибок в канале некоторые потребители могут получить ошибочные данные. Такая ошибка особенно нежелательна, если широковещательный режим используется для обеспечения синхронной работы нескольких контроллеров в одном и том же технологическом процессе, поскольку она приведен к рассинхронизации процесса.
Особенностью
рассмотренного случая является то, что
вероятность ошибки в системе резко
возрастает по сравнению с вероятностью
ошибки в одном канале
.
Поскольку вероятность безошибочной
передачи в системе является произведением
вероятностей безошибочной передачи в
каждом из каналов, то при количестве
одинаковых каналов
вероятность
отсутствия сбоев в системе будет равна
.
Например, в системе из 8 каналов при
вероятности ошибки в канале
вероятность
безошибочной передачи составит всего
43%.
Одним из примеров, где описанная ситуация может играть роль, является режим одновременного ввода несколькими устройствами сигналов датчиков. В проводных сетях для этого используют широковещательные команды, которые доходят до всех устройств одновременно (в сетях Modbus это команда с адресом "0"). Если аналогичный режим использовать в беспроводной сети, то вероятность того, что все датчиков введут отсчеты одновременно, будет также равна .
В сетях с передачей маркера помехи могут привести к потере маркера и отключению устройств с потерянным маркером на несколько периодов обращения маркера по логическому кольцу.
