- •1. Архитектура автоматизированной системы
- •1.1. Разновидности архитектур
- •1.1.1. Требования к архитектуре
- •1.1.2. Простейшая система
- •1.1.3. Распределенные системы автоматизации
- •1.1.4. Многоуровневая архитектура
- •1.2. Применение интернет-технологий
- •1.2.1. Проблемы и их решение
- •1.2.2. Основные понятия технологии интернета
- •1.2.3. Принципы управления через интернет
- •1.2.4. Микро веб-серверы
- •1.2.5. Примеры применения
- •1.3. Понятие открытой системы
- •1.3.1. Свойства открытых систем
- •Модульность
- •Платформенная независимость
- •Взаимозаменяемость
- •Интероперабельность (аппаратно-программная совместимость)
- •Масштабируемость (наращиваемость)
- •Интерфейс пользователя
- •Программная совместимость
- •1.3.3. Достоинства и недостатки
- •1.4. Заключение к главе "Архитектура автоматизированных систем"
- •Обзор публикаций
- •2. Промышленные сети и интерфейсы
- •2.1. Общие сведения о промышленных сетях
- •2.2. Модель osi
- •2.2.1. Физический уровень
- •2.2.2. Канальный уровень
- •2.2.3. Сетевой уровень
- •2.2.4. Транспортный уровень
- •2.2.5. Сеансовый уровень
- •2.2.6. Уровень представления
- •2.2.7. Прикладной уровень
- •2.2.8. Критика модели osi
- •2.3. Интерфейсы rs-485, rs-422 и rs-232
- •2.3.1. Принципы построения Дифференциальная передача сигнала
- •"Третье" состояние выходов
- •Четырехпроводной интерфейс
- •Режим приема эха
- •Заземление, гальваническая изоляция и защита от молнии
- •2.3.2. Стандартные параметры
- •2.3.3. Согласование линии с передатчиком и приемником
- •2.3.4. Топология сети на основе интерфейса rs-485
- •2.3.5. Устранение состояния неопределенности линии
- •2.3.6. Сквозные токи
- •2.3.7. Выбор кабеля
- •2.3.8. Расширение предельных возможностей
- •2.3.9. Интерфейсы rs-232 и rs-422
- •2.4. Интерфейс "токовая петля"
- •Аналоговая "токовая петля"
- •Цифровая "токовая тепля"
- •2.5. Hart-протокол
- •Принципы построения
- •Сеть на основе hart-протокола
- •Адресация
- •Команды hart
- •Язык описания устройств ddl
- •Разновидности hart
- •2.6.1. Физический уровень
- •Электрические соединения в сети can
- •Трансивер can
- •2.6.2. Канальный уровень
- •Адресация и доступ к шине
- •Достоверность передачи
- •Передача сообщений
- •Пауза между фреймами
- •Фильтрация сообщений
- •Валидация сообщений
- •2.6.3. Прикладной уровень: caNopen
- •Коммуникационные модели
- •2.6.4. Электронные спецификации устройств caNopen
- •2.7.1. Физический уровень
- •2.7.2. Канальный уровень Profibus dp
- •Коммуникационный профиль dp
- •Передача сообщений
- •2.7.3. Резервирование
- •2.7.4. Описание устройств
- •2.8.1. Физический уровень
- •2.8.2. Канальный уровень
- •Описание кадра (фрейма) протокола Modbus
- •Структура данных в режиме rtu
- •Структура Modbus rtu сообщения
- •Контроль ошибок
- •2.8.3. Прикладной уровень
- •Коды функций
- •Содержание поля данных
- •Список кодов Modbus
- •2.9. Промышленный Ethernet
- •2.9.1. Отличительные особенности
- •2.9.2. Физический уровень
- •Методы кодирования
- •Доступ к линии передачи
- •Коммутаторы
- •2.9.3. Канальный уровень
- •2.10. Протокол dcon
- •2.11. Беспроводные локальные сети
- •2.11.1. Проблемы беспроводных сетей и пути их решения
- •Зависимость плотности мощности от расстояния
- •Влияние интерференции волн
- •Источники помех
- •Широкополосная передача
- •Методы модуляции несущей
- •Другие особенности беспроводных каналов
- •Методы уменьшение количества ошибок в канале
- •Передача сообщений без подтверждения о получении
- •Использование пространственного разнесения антенн
- •Вопросы безопасности
- •Физический и канальный уровень
- •Модель передачи данных
- •Структура фреймов
- •Сетевой уровень
- •Уровень приложений
- •Физический и канальный уровень
- •Архитектура сети Wi-Fi
- •2.11.5. Сравнение беспроводных сетей
- •2.12. Сетевое оборудование
- •2.12.1. Повторители интерфейса
- •2.12.2. Концентраторы (хабы)
- •2.12.3. Преобразователи интерфейса
- •Преобразователь rs-232 - rs-485/422
- •Преобразователь rs-232 в оптоволоконный интерфейс
- •Преобразователь usb в rs-232, rs-485, rs-422
- •2.12.4. Адресуемые преобразователи интерфейса
- •2.12.5. Межсетевые шлюзы
- •2.12.6. Другое сетевое оборудование
- •Маршрутизаторы
- •Сетевые адаптеры
- •Коммутаторы
- •Мультиплексоры
- •Межсетевой экран
- •2.12.7. Кабели для промышленных сетей
- •2.13. Заключение к главе "Промышленные сети и интерфейсы"
- •3. Защита от помех
- •3.1. Источники помех
- •3.1.1. Характеристики помех
- •3.1.2. Помехи из сети электроснабжения
- •3.1.3. Молния и атмосферное электричество
- •3.1.4. Статическое электричество
- •3.1.5. Помехи через кондуктивные связи
- •3.1.6. Электромагнитные помехи
- •3.1.7. Другие типы помех
- •3.2. Заземление
- •3.2.1. Определения
- •3.2.2. Цели заземления
- •3.2.3. Защитное заземление зданий
- •3.2.4. Автономное заземление
- •3.2.5. Заземляющие проводники
- •3.2.6. Модель «земли»
- •3.2.7. Виды заземлений
- •Силовое заземление
- •Аналоговая и цифровая земля
- •«Плавающая» земля
- •3.3. Проводные каналы передачи сигналов
- •3.3.1. Источники сигнала
- •3.3.2. Приемники сигнала
- •3.3.3. Прием сигнала заземленного источника
- •3.3.4. Прием сигнала незаземленных источников
- •3.3.5. Дифференциальные каналы передачи сигнала
- •Токовый дифференциальный канал
- •Балансный канал
- •3.4. Паразитные связи
- •3.4.1. Модели компонентов систем автоматизации
- •3.4.2. Паразитные кондуктивные связи
- •3.4.3. Индуктивные и емкостные связи
- •3.5. Методы экранирования и заземления
- •3.5.1. Гальванически связанные цепи
- •3.5.2. Экранирование сигнальных кабелей
- •3.5.3. Гальванически развязанные цепи
- •3.5.4. Экраны кабелей на электрических подстанциях
- •3.5.5. Экраны кабелей для защиты от молнии
- •3.5.6. Заземление при дифференциальных измерениях
- •3.5.7. Интеллектуальные датчики
- •3.5.8. Монтажные шкафы
- •3.5.9. Распределенные системы управления
- •3.5.10. Чувствительные измерительные цепи
- •3.5.11. Исполнительное оборудование и приводы
- •Заземление в промышленных сетях
- •3.5.12. Заземление на взрывоопасных объектах
- •3.6. Гальваническая развязка
- •3.7. Защита промышленных сетей от молнии
- •3.7.1. Пути прохождения импульса молнии
- •3.7.2. Средства защиты
- •3.8. Стандарты и методы испытаний по эмс
- •3.9. Верификация заземления и экранирования
- •3.10. Заключение
- •Радикальные методы решения проблем заземления
- •Другие советы
Коммуникационные модели
Коммуникационная модель CANopen определяет различные коммуникационные объекты и сервисы, а также доступные режимы запуска передачи сообщений, поддерживает передачу синхронных и асинхронных сообщений. Синхронные сообщения используются для сбора данных или управления исполнительными устройствами. Синхронные сообщения передаются относительно сообщений синхронизации, которые определяются заранее; асинхронные сообщения могут передаваться в любое время.
В CANopen используют три типа взаимодействий между передающим и принимающим устройством:
ведущий/ведомый;
клиент/сервер;
производитель/потребитель.
2.6.4. Электронные спецификации устройств caNopen
Поскольку устройства, используемые в сети, являются программируемыми, перед их включением в сеть необходимо задать параметры, необходимые для их коммуникаций с сетью и функционирования. CANopen устанавливает для этого стандартизованный метод. Метод предполагает наличие электронного описания устройств в текстовом формате, для обработки которого достаточно несложного компилятора. CANopen определяет формат EDS (Electronic Data Sheet - "электронный список параметров"), который описывает конфигурацию и параметры устройств, в том числе контроллеров с модульной архитектурой.
EDS поддерживается и поставляется производителем устройства. В противном случае используется EDS "по умолчанию", общий для определенного класса устройств, например, модулей аналогового ввода.
EDS является текстовым файлом, использующим ASCII-коды (набор символов по стандарту ISO 646). Длина строки файла - 255 символов, строки должны оканчиваться символами CR или LF.
Файл содержит несколько секций:
информация о самом файле (имя файла, версия, дата создания, версия EDS, описание, кем создан, дата модификации и др.);
общая информация об устройстве (имя производителя, идентификационный код производителя, имя устройства, код устройства, номер версии, функции устройства, список поддерживаемых скоростей обмена, наличие программы начальной загрузки и др.);
конфигурационные параметры (длительность цикла обмена, тип устройства, тип данных, нижний и верхний предел изменения переменных, значения по умолчанию, количество каналов ввода-вывода и др.).
Полное описание структуры EDS файла дано в стандарте [CAN].
2.7. Profibus
Слово PROFIBUS получено из сокращений PROcess FIeld BUS, что приблизительно переводится как "промышленная шина для технологических процессов". Стандарт Profibus был первоначально принят в Германии в 1987 году, затем, в 1996 году, он стал международным (EN 50170 и EN 50254).
Сеть Profibus (как и другие описанные здесь промышленные сети, кроме Industrial Ethernet) использует только первый и второй уровни модели OSI. Один из вариантов сети, Profibus FMS, использует также уровень 7.
Табл. 2.10. Profibus в соответствии с моделью OSI |
||||
№ |
Название уровня |
Profibus DP |
Profibus FMS |
Profibus PA |
7 |
Прикладной |
Нет |
Fieldbus Message Specification (FMS) |
Нет |
6 |
Представления |
Нет |
||
5 |
Сеансовый |
|||
4 |
Транспортный |
|||
3 |
Сетевой |
|||
2 |
Канальный (передачи данных) |
FDL |
FDL |
IEC 1158-2 |
1 |
Физический |
RS-485, оптоволоконный интерфейс |
RS-485, оптоволоконный интерфейс |
Интерфейс IEC 1158-2 |
Profibus имеет три модификации: Profibus DP, Profibus FMS и Profibus PA [Profibus].
Profibus DP (Profibus for Decentralized Peripherals - "Profibus для децентрализованной периферии") использует уровни 1 и 2 модели OSI, а также пользовательский интерфейс, который в модель OSI не входит. Непосредственный доступ из пользовательского приложения к канальному уровню осуществляется с помощью DDLM (Direct Data Link Mapper - "прямой преобразователь для канального уровня"). Пользовательский интерфейс обеспечивает функции, необходимые для связи с устройствами ввода-вывода и контроллерами. Profibus DP в отличие от FMS и PA построен таким образом, чтобы обеспечить наиболее быстрый обмен данными с устройствами, подключенными к сети.
Profibus FMS (Profibus с FMS протоколом) использует уровень 7 модели OSI и применяется для обмена данными с контроллерами и компьютерами на регистровом уровне. Profibus FMS предоставляет большую гибкость при передаче больших объемов данных, но проигрывает протоколу DP в популярности вследствие своей сложности.
Profibus FMS и DP используют один и тот же физический уровень, основанный на интерфейсе RS-485 и могут работать в общей сети.
Profibus PA (Profibus for Process Automation - "для автоматизации технологических процессов") использует физический уровень на основе стандарта IEC 1158-2, который обеспечивает питание сетевых устройств через шину и не совместим с RS-485. Особенностью Profibus PA является возможность работы во взрывоопасной зоне.
В последние годы появился стандарт PROFInet, который основан на Industrial Ethernet и технологиях COM, DCOM (см. главу "Программное обеспечение"). Он легко обеспечивает связь промышленной сети Profibus с офисной сетью Ethernet.
Profibus является многомастерной сетью (с несколькими ведущими устройствами). В качестве ведомых устройств выступают обычно устройства ввода-вывода, клапаны, измерительные преобразователи. Они не могут самостоятельно получить доступ к шине и только отвечают на запросы ведущего устройства.
