- •1. Архитектура автоматизированной системы
- •1.1. Разновидности архитектур
- •1.1.1. Требования к архитектуре
- •1.1.2. Простейшая система
- •1.1.3. Распределенные системы автоматизации
- •1.1.4. Многоуровневая архитектура
- •1.2. Применение интернет-технологий
- •1.2.1. Проблемы и их решение
- •1.2.2. Основные понятия технологии интернета
- •1.2.3. Принципы управления через интернет
- •1.2.4. Микро веб-серверы
- •1.2.5. Примеры применения
- •1.3. Понятие открытой системы
- •1.3.1. Свойства открытых систем
- •Модульность
- •Платформенная независимость
- •Взаимозаменяемость
- •Интероперабельность (аппаратно-программная совместимость)
- •Масштабируемость (наращиваемость)
- •Интерфейс пользователя
- •Программная совместимость
- •1.3.3. Достоинства и недостатки
- •1.4. Заключение к главе "Архитектура автоматизированных систем"
- •Обзор публикаций
- •2. Промышленные сети и интерфейсы
- •2.1. Общие сведения о промышленных сетях
- •2.2. Модель osi
- •2.2.1. Физический уровень
- •2.2.2. Канальный уровень
- •2.2.3. Сетевой уровень
- •2.2.4. Транспортный уровень
- •2.2.5. Сеансовый уровень
- •2.2.6. Уровень представления
- •2.2.7. Прикладной уровень
- •2.2.8. Критика модели osi
- •2.3. Интерфейсы rs-485, rs-422 и rs-232
- •2.3.1. Принципы построения Дифференциальная передача сигнала
- •"Третье" состояние выходов
- •Четырехпроводной интерфейс
- •Режим приема эха
- •Заземление, гальваническая изоляция и защита от молнии
- •2.3.2. Стандартные параметры
- •2.3.3. Согласование линии с передатчиком и приемником
- •2.3.4. Топология сети на основе интерфейса rs-485
- •2.3.5. Устранение состояния неопределенности линии
- •2.3.6. Сквозные токи
- •2.3.7. Выбор кабеля
- •2.3.8. Расширение предельных возможностей
- •2.3.9. Интерфейсы rs-232 и rs-422
- •2.4. Интерфейс "токовая петля"
- •Аналоговая "токовая петля"
- •Цифровая "токовая тепля"
- •2.5. Hart-протокол
- •Принципы построения
- •Сеть на основе hart-протокола
- •Адресация
- •Команды hart
- •Язык описания устройств ddl
- •Разновидности hart
- •2.6.1. Физический уровень
- •Электрические соединения в сети can
- •Трансивер can
- •2.6.2. Канальный уровень
- •Адресация и доступ к шине
- •Достоверность передачи
- •Передача сообщений
- •Пауза между фреймами
- •Фильтрация сообщений
- •Валидация сообщений
- •2.6.3. Прикладной уровень: caNopen
- •Коммуникационные модели
- •2.6.4. Электронные спецификации устройств caNopen
- •2.7.1. Физический уровень
- •2.7.2. Канальный уровень Profibus dp
- •Коммуникационный профиль dp
- •Передача сообщений
- •2.7.3. Резервирование
- •2.7.4. Описание устройств
- •2.8.1. Физический уровень
- •2.8.2. Канальный уровень
- •Описание кадра (фрейма) протокола Modbus
- •Структура данных в режиме rtu
- •Структура Modbus rtu сообщения
- •Контроль ошибок
- •2.8.3. Прикладной уровень
- •Коды функций
- •Содержание поля данных
- •Список кодов Modbus
- •2.9. Промышленный Ethernet
- •2.9.1. Отличительные особенности
- •2.9.2. Физический уровень
- •Методы кодирования
- •Доступ к линии передачи
- •Коммутаторы
- •2.9.3. Канальный уровень
- •2.10. Протокол dcon
- •2.11. Беспроводные локальные сети
- •2.11.1. Проблемы беспроводных сетей и пути их решения
- •Зависимость плотности мощности от расстояния
- •Влияние интерференции волн
- •Источники помех
- •Широкополосная передача
- •Методы модуляции несущей
- •Другие особенности беспроводных каналов
- •Методы уменьшение количества ошибок в канале
- •Передача сообщений без подтверждения о получении
- •Использование пространственного разнесения антенн
- •Вопросы безопасности
- •Физический и канальный уровень
- •Модель передачи данных
- •Структура фреймов
- •Сетевой уровень
- •Уровень приложений
- •Физический и канальный уровень
- •Архитектура сети Wi-Fi
- •2.11.5. Сравнение беспроводных сетей
- •2.12. Сетевое оборудование
- •2.12.1. Повторители интерфейса
- •2.12.2. Концентраторы (хабы)
- •2.12.3. Преобразователи интерфейса
- •Преобразователь rs-232 - rs-485/422
- •Преобразователь rs-232 в оптоволоконный интерфейс
- •Преобразователь usb в rs-232, rs-485, rs-422
- •2.12.4. Адресуемые преобразователи интерфейса
- •2.12.5. Межсетевые шлюзы
- •2.12.6. Другое сетевое оборудование
- •Маршрутизаторы
- •Сетевые адаптеры
- •Коммутаторы
- •Мультиплексоры
- •Межсетевой экран
- •2.12.7. Кабели для промышленных сетей
- •2.13. Заключение к главе "Промышленные сети и интерфейсы"
- •3. Защита от помех
- •3.1. Источники помех
- •3.1.1. Характеристики помех
- •3.1.2. Помехи из сети электроснабжения
- •3.1.3. Молния и атмосферное электричество
- •3.1.4. Статическое электричество
- •3.1.5. Помехи через кондуктивные связи
- •3.1.6. Электромагнитные помехи
- •3.1.7. Другие типы помех
- •3.2. Заземление
- •3.2.1. Определения
- •3.2.2. Цели заземления
- •3.2.3. Защитное заземление зданий
- •3.2.4. Автономное заземление
- •3.2.5. Заземляющие проводники
- •3.2.6. Модель «земли»
- •3.2.7. Виды заземлений
- •Силовое заземление
- •Аналоговая и цифровая земля
- •«Плавающая» земля
- •3.3. Проводные каналы передачи сигналов
- •3.3.1. Источники сигнала
- •3.3.2. Приемники сигнала
- •3.3.3. Прием сигнала заземленного источника
- •3.3.4. Прием сигнала незаземленных источников
- •3.3.5. Дифференциальные каналы передачи сигнала
- •Токовый дифференциальный канал
- •Балансный канал
- •3.4. Паразитные связи
- •3.4.1. Модели компонентов систем автоматизации
- •3.4.2. Паразитные кондуктивные связи
- •3.4.3. Индуктивные и емкостные связи
- •3.5. Методы экранирования и заземления
- •3.5.1. Гальванически связанные цепи
- •3.5.2. Экранирование сигнальных кабелей
- •3.5.3. Гальванически развязанные цепи
- •3.5.4. Экраны кабелей на электрических подстанциях
- •3.5.5. Экраны кабелей для защиты от молнии
- •3.5.6. Заземление при дифференциальных измерениях
- •3.5.7. Интеллектуальные датчики
- •3.5.8. Монтажные шкафы
- •3.5.9. Распределенные системы управления
- •3.5.10. Чувствительные измерительные цепи
- •3.5.11. Исполнительное оборудование и приводы
- •Заземление в промышленных сетях
- •3.5.12. Заземление на взрывоопасных объектах
- •3.6. Гальваническая развязка
- •3.7. Защита промышленных сетей от молнии
- •3.7.1. Пути прохождения импульса молнии
- •3.7.2. Средства защиты
- •3.8. Стандарты и методы испытаний по эмс
- •3.9. Верификация заземления и экранирования
- •3.10. Заключение
- •Радикальные методы решения проблем заземления
- •Другие советы
Режим приема эха
-
Рис. 2.2. Четырехпроводное соединение устройств с интерфейсом RS-485
Если приемник передающего узла включен во время передачи, то передающий узел принимает свои же сигналы. Этот режим называется "приемом эха" и обычно устанавливается микропереключателем на плате интерфейса. Прием эха иногда используется в сложных протоколах передачи, но чаще этот режим выключен.
Заземление, гальваническая изоляция и защита от молнии
Если порты RS-485, подключенные к линии передачи, расположены на большом расстоянии один от другого, то потенциалы их "земель" могут сильно различаться. В этом случае для исключения пробоя выходных каскадов микросхем трансиверов (приемопередатчиков) интерфейса следует использовать гальваническую изоляцию между портом RS-485 и землей. При небольшой разности потенциалов "земли" для выравнивания потенциалов, в принципе, можно использовать проводник, однако такой способ на практике не применяется, поскольку практически все коммерческие интерфейсы RS-485 имеют гальваническую изоляцию (см. например, преобразователь NL-232C или повторитель интерфейсов NL-485C фирмы НИЛ АП).
Защита интерфейса от молнии выполняется с помощью газоразрядных и полупроводниковых устройств защиты, см. раздел "Защита от помех".
2.3.2. Стандартные параметры
В последнее время появилось много микросхем трансиверов интерфейса RS-485, которые имеют более широкие возможности, чем установленные стандартом. Однако для обеспечения совместимости устройств между собой необходимо знать параметры, описанные в стандарте (см. табл. 2.2).
Табл. 2.2. Параметры интерфейса RS-485, установленные стандартом |
||||
Параметр |
Условие |
Мин. |
Макс. |
Единица измерения |
Выходное напряжение передатчика без нагрузки |
|
1,5 -1,5 |
6 -6 |
В В |
Выходное напряжение передатчика с нагрузкой |
|
1,5 -1,5 |
5 -5 |
В В |
Ток к. з. передатчика |
К. з. выхода на источник питания +12 В или на ‑7 В |
- |
±250 |
мА |
Длительность переднего фронта импульсов передатчика |
|
- |
30 |
% от ширины импульса |
Синфазное напряжение на выходе передатчика |
|
-1 |
3 |
В |
Чувствительность приемника |
При синфазном напряжении от -7 до +12 В |
- |
±200 |
мВ |
Синфазное напряжение на входе приемника |
|
-7 |
+12 |
В |
Входное сопротивление приемника |
|
12 |
- |
кОм |
Максимальная скорость передачи |
Кабель длиной: 12 м 1200 м |
10 100 |
- |
Мбит/с Кбит/с |
Примечание. Передатчик должен выдерживать режим короткого замыкания как между своими выходами, так и замыкание их на +12 В или -7 В.
