- •1. Архитектура автоматизированной системы
- •1.1. Разновидности архитектур
- •1.1.1. Требования к архитектуре
- •1.1.2. Простейшая система
- •1.1.3. Распределенные системы автоматизации
- •1.1.4. Многоуровневая архитектура
- •1.2. Применение интернет-технологий
- •1.2.1. Проблемы и их решение
- •1.2.2. Основные понятия технологии интернета
- •1.2.3. Принципы управления через интернет
- •1.2.4. Микро веб-серверы
- •1.2.5. Примеры применения
- •1.3. Понятие открытой системы
- •1.3.1. Свойства открытых систем
- •Модульность
- •Платформенная независимость
- •Взаимозаменяемость
- •Интероперабельность (аппаратно-программная совместимость)
- •Масштабируемость (наращиваемость)
- •Интерфейс пользователя
- •Программная совместимость
- •1.3.3. Достоинства и недостатки
- •1.4. Заключение к главе "Архитектура автоматизированных систем"
- •Обзор публикаций
- •2. Промышленные сети и интерфейсы
- •2.1. Общие сведения о промышленных сетях
- •2.2. Модель osi
- •2.2.1. Физический уровень
- •2.2.2. Канальный уровень
- •2.2.3. Сетевой уровень
- •2.2.4. Транспортный уровень
- •2.2.5. Сеансовый уровень
- •2.2.6. Уровень представления
- •2.2.7. Прикладной уровень
- •2.2.8. Критика модели osi
- •2.3. Интерфейсы rs-485, rs-422 и rs-232
- •2.3.1. Принципы построения Дифференциальная передача сигнала
- •"Третье" состояние выходов
- •Четырехпроводной интерфейс
- •Режим приема эха
- •Заземление, гальваническая изоляция и защита от молнии
- •2.3.2. Стандартные параметры
- •2.3.3. Согласование линии с передатчиком и приемником
- •2.3.4. Топология сети на основе интерфейса rs-485
- •2.3.5. Устранение состояния неопределенности линии
- •2.3.6. Сквозные токи
- •2.3.7. Выбор кабеля
- •2.3.8. Расширение предельных возможностей
- •2.3.9. Интерфейсы rs-232 и rs-422
- •2.4. Интерфейс "токовая петля"
- •Аналоговая "токовая петля"
- •Цифровая "токовая тепля"
- •2.5. Hart-протокол
- •Принципы построения
- •Сеть на основе hart-протокола
- •Адресация
- •Команды hart
- •Язык описания устройств ddl
- •Разновидности hart
- •2.6.1. Физический уровень
- •Электрические соединения в сети can
- •Трансивер can
- •2.6.2. Канальный уровень
- •Адресация и доступ к шине
- •Достоверность передачи
- •Передача сообщений
- •Пауза между фреймами
- •Фильтрация сообщений
- •Валидация сообщений
- •2.6.3. Прикладной уровень: caNopen
- •Коммуникационные модели
- •2.6.4. Электронные спецификации устройств caNopen
- •2.7.1. Физический уровень
- •2.7.2. Канальный уровень Profibus dp
- •Коммуникационный профиль dp
- •Передача сообщений
- •2.7.3. Резервирование
- •2.7.4. Описание устройств
- •2.8.1. Физический уровень
- •2.8.2. Канальный уровень
- •Описание кадра (фрейма) протокола Modbus
- •Структура данных в режиме rtu
- •Структура Modbus rtu сообщения
- •Контроль ошибок
- •2.8.3. Прикладной уровень
- •Коды функций
- •Содержание поля данных
- •Список кодов Modbus
- •2.9. Промышленный Ethernet
- •2.9.1. Отличительные особенности
- •2.9.2. Физический уровень
- •Методы кодирования
- •Доступ к линии передачи
- •Коммутаторы
- •2.9.3. Канальный уровень
- •2.10. Протокол dcon
- •2.11. Беспроводные локальные сети
- •2.11.1. Проблемы беспроводных сетей и пути их решения
- •Зависимость плотности мощности от расстояния
- •Влияние интерференции волн
- •Источники помех
- •Широкополосная передача
- •Методы модуляции несущей
- •Другие особенности беспроводных каналов
- •Методы уменьшение количества ошибок в канале
- •Передача сообщений без подтверждения о получении
- •Использование пространственного разнесения антенн
- •Вопросы безопасности
- •Физический и канальный уровень
- •Модель передачи данных
- •Структура фреймов
- •Сетевой уровень
- •Уровень приложений
- •Физический и канальный уровень
- •Архитектура сети Wi-Fi
- •2.11.5. Сравнение беспроводных сетей
- •2.12. Сетевое оборудование
- •2.12.1. Повторители интерфейса
- •2.12.2. Концентраторы (хабы)
- •2.12.3. Преобразователи интерфейса
- •Преобразователь rs-232 - rs-485/422
- •Преобразователь rs-232 в оптоволоконный интерфейс
- •Преобразователь usb в rs-232, rs-485, rs-422
- •2.12.4. Адресуемые преобразователи интерфейса
- •2.12.5. Межсетевые шлюзы
- •2.12.6. Другое сетевое оборудование
- •Маршрутизаторы
- •Сетевые адаптеры
- •Коммутаторы
- •Мультиплексоры
- •Межсетевой экран
- •2.12.7. Кабели для промышленных сетей
- •2.13. Заключение к главе "Промышленные сети и интерфейсы"
- •3. Защита от помех
- •3.1. Источники помех
- •3.1.1. Характеристики помех
- •3.1.2. Помехи из сети электроснабжения
- •3.1.3. Молния и атмосферное электричество
- •3.1.4. Статическое электричество
- •3.1.5. Помехи через кондуктивные связи
- •3.1.6. Электромагнитные помехи
- •3.1.7. Другие типы помех
- •3.2. Заземление
- •3.2.1. Определения
- •3.2.2. Цели заземления
- •3.2.3. Защитное заземление зданий
- •3.2.4. Автономное заземление
- •3.2.5. Заземляющие проводники
- •3.2.6. Модель «земли»
- •3.2.7. Виды заземлений
- •Силовое заземление
- •Аналоговая и цифровая земля
- •«Плавающая» земля
- •3.3. Проводные каналы передачи сигналов
- •3.3.1. Источники сигнала
- •3.3.2. Приемники сигнала
- •3.3.3. Прием сигнала заземленного источника
- •3.3.4. Прием сигнала незаземленных источников
- •3.3.5. Дифференциальные каналы передачи сигнала
- •Токовый дифференциальный канал
- •Балансный канал
- •3.4. Паразитные связи
- •3.4.1. Модели компонентов систем автоматизации
- •3.4.2. Паразитные кондуктивные связи
- •3.4.3. Индуктивные и емкостные связи
- •3.5. Методы экранирования и заземления
- •3.5.1. Гальванически связанные цепи
- •3.5.2. Экранирование сигнальных кабелей
- •3.5.3. Гальванически развязанные цепи
- •3.5.4. Экраны кабелей на электрических подстанциях
- •3.5.5. Экраны кабелей для защиты от молнии
- •3.5.6. Заземление при дифференциальных измерениях
- •3.5.7. Интеллектуальные датчики
- •3.5.8. Монтажные шкафы
- •3.5.9. Распределенные системы управления
- •3.5.10. Чувствительные измерительные цепи
- •3.5.11. Исполнительное оборудование и приводы
- •Заземление в промышленных сетях
- •3.5.12. Заземление на взрывоопасных объектах
- •3.6. Гальваническая развязка
- •3.7. Защита промышленных сетей от молнии
- •3.7.1. Пути прохождения импульса молнии
- •3.7.2. Средства защиты
- •3.8. Стандарты и методы испытаний по эмс
- •3.9. Верификация заземления и экранирования
- •3.10. Заключение
- •Радикальные методы решения проблем заземления
- •Другие советы
1.3.1. Свойства открытых систем
Открытые системы обладают следующими положительными свойствами [Business, Feldmann, Wang], благодаря которым системные интеграторы проявляют к ним большой интерес:
модульность;
платформенная независимость;
взаимозаменяемость с компонентами других производителей;
интероперабельность (возможность совместной работы) с компонентами других производителей;
масштабируемость.
Отметим, что закрытые системы тоже могут быть модульными, интероперабельными, масштабируемыми. Отличие открытых систем состоит в том, что все перечисленные свойства должны выполняться для компонентов, изготовленных разными производителями и имеющихся в свободной продаже.
К системам с открытой архитектурой предъявляют также общепринятые требования: экономичности, безопасности, надежности, грубости (робастности), простоты обслуживания и соответствия условиям эксплуатации, способности к самодиагностике и наличию рекомендаций по ремонту. Система должна обеспечивать максимальное время работы без сбоя и отказа, а также минимальное время, необходимое для выполнения технического обслуживания или ремонта.
Модульность
Модульность - это способность аппаратного или программного обеспечения к модификации путем добавления, удаления или замены отдельных модулей (компонентов системы) без воздействия на оставшуюся ее часть.
Модульность обеспечивается при проектировании системы на архитектурном уровне. Базой для построения модульного программного обеспечения является объектно-ориентированное программирование. Главным достижением в направлении развития модульности программного обеспечения АСУ ТП является выделение в нем независимых подсистем: программы в ПЛК, OPC сервера, баз данных, операторского интерфейса и алгоритмической части, реализуемой на языках стандарта IEC 61131-3, а также деление SCADA на серверную и клиентскую части.
Платформенная независимость
Возможность выполнения программ на разных аппаратно-программных платформах обеспечивает независимость от поставщика этих платформ и дает следующие преимущества:
расширение выбора оборудования путем увеличения числа поставщиков;
независимость от поставщика аппаратного и программного обеспечения.
Отсутствие этих свойств приводит к тому, что система, зависящая от одного производителя, прекращает свое развитие в случаях, когда фирма-производитель внезапно уходит с рынка, увеличивает стоимость продукта или снимает его с производства.
Применение ОС Windows является одним из путей повышения открытости систем, поскольку эта операционная система может быть установлена на максимальное число типов производимых компьютеров. В данном случае монополия фирмы Microsoft компенсируется ее размерами и стабильностью.
Платформенную независимость программных средств и, как следствие, повышение открытости обеспечивает также язык Java, хотя он и уступает С++ по быстродействию приложений.
Для улучшения открытости при компиляции исполняемых модулей программ важно избегать "улучшений" компилятора, применения плагинов, надстроек, скачанных "откуда-то из интернета", поскольку они могут сделать невозможным выполнение программы на других платформах.
Важным шагом на пути обеспечения платформенной независимости явилось применение интранет-технологий в автоматизации, когда передача информации к рабочей станции осуществляется с помощью языка xml, а ее представление пользователю выполняется с помощью любого веб-браузера. Веб-браузер позволяет в качестве рабочей станции АСУ ТП использовать компьютер и операционную систему любого производителя из имеющихся в свободной продаже.
Платформенной независимостью обладает также база данных с языком запросов SQL (Structured Query Language), если исключить из него по возможности все нестандартные расширения. Доступ к базе данных с помощью SQLосуществим независимо от программно-аппаратной платформы, на которой она находятся.
