
- •Двнз червоноградський гірничо-економічний коледж
- •Червоноград 2014
- •Тема 1.
- •1.1.7. Види небезпек: мікро- та макробіологічна, вибухопожежна, гідродинамічна, пожежна, радіаційна, фізична, хімічна, екологічна.
- •1.1.8. Класифікація нс за причинами походження, територіального поширення і обсягів заподіяних або очікуваних збитків
- •3Агальна характеристика класифікатора нс
- •1. Вступ
- •2. Нормативні посилання
- •3. Визначення та скорочення
- •Тема3.2.
- •3.4.1. Джерела радіації та одиниці її вимірювання
- •Джерела природної радіоактивності Джерелами природної радіоактивності є:
- •Штучні джерела радіації
- •Джерела радіоактивного забруднення штучними радіонуклідами.
- •Установлюються три категорії підприємств і об'єктів:
- •Одиниця активності - беккерель (Бк, Бq)
- •Одиниця радіоактивності речовини -Бк/кг; Кі/кг; Бк/л; Кі/л
- •Одиниця радіоактивності площі - Бк/км2; Кі/км2
- •Рентген (р, в)
- •3.4.2.Класифікація радіаційних аварій за характером дії і масштабами.
- •За масштабом комунальні радіаційні аварії більш детально поділяються на:
- •3.4.3. Фази аварій та фактори радіаційного впливу на людину.
- •Характеристика фаз розвитку аварії ядерного реактору, подібної аварії на чаес.
- •3.4.4.Механізм дії іонізуючих випромінювань на тканини організму
- •Загальна характеристика ушкоджуючої дії іонізуючих випромінювань
- •Механізми дії іонізуючих випромінювань на живі організми
- •3.4.5. Ознаки радіаційного ураження. Гостре опромінення. Хронічне опромінення.
- •Класифікація променевих уражень організму
- •В плині гпх виділяють 4 періоди:
- •Хронічна променева хвороба
- •Патогенез променевого ураження організму
- •3.4.6. Нормування радіаційної безпеки.
- •Принципи протирадіаційного захисту при медичному опроміненні
- •Персонал в умовах радіаційної аварії
- •Населення в умовах радіаційної аварії
- •Рівні безумовно виправданого термінового втручання при гострому опроміненні
- •Рівні відвернутої річної еквівалентної дози хронічного опромінення органів та тканин, при яких термінове втручання безумовно виправдане
- •Нижні межі виправданості, безумовно виправдані рівні втручання і рівні дії для прийняття рішення про переселення
- •Найнижчі межі виправданості і безумовно виправдані рівні втручання і дії для прийняття рішення про тимчасове відселення
- •Найнижчі межі виправданості і безумовно виправдані рівні втручання і дії для прийняття рішення про вилучення, заміну і обмеження* вживання радіоактивно забруднених продуктів харчування
- •3.4.7. Рівні втручання у разі радіаційної аварії.
- •Принципи втручань
- •Виправданість втручання
- •Найнижчі межі виправданості і безумовно виправдані рівні втручання і дії для прийняття рішення про вилучення, заміну і обмеження* вживання радіоактивно забруднених продуктів харчування
- •Вимоги до протирадіаційного захисту людини від техногенно-підсилених джерел природного походження на виробництві.
- •2.1.5.Регіональний комплекс природних загроз.
- •1. Можлива обстановка в надзвичайних ситуаціях викликаних сильними вітрами на Львівщині
- •2. Можлива обстановка в системі енергопостачання під час виникнення природних загроз:
- •3. Можлива обстановка в надзвичайних ситуаціях викликаних повенями, паводками:
- •4. Можлива обстановка у випадку виникнення заторів і піднімання води на річках області.
- •1. Загальні положення
- •2. Визначення термінів
- •3. Основні обов'язки керівників та посадових осіб об'єктів у сфері техногенної безпеки
- •4. Виконання основних вимог техногенної безпеки у сфері цивільного захисту
- •4.8. Радіаційний і хімічний захист
- •1 .1. Складові безпеки життєдіяльності
- •1.2. Предмет безпеки життєдіяльності
- •1.3. Аксіоми безпеки життєдіяльності
- •1.4. Головні визначення - безпека, загроза, небезпека, надзвичайна ситуація, ризик. Безпека людини, суспільства, національна безпека.
- •1.5. Культура безпеки як елемент загальної культури, що реалізує захисну функцію людства
- •1.6. Класифікація нс за причинами походження, територіального поширення і обсягів заподіяних або очікуваних збитків.
- •1.7. Визначення потенційно-небезпечних об'єктів і територій. Паспортизація, ідентифікація та декларування безпеки об'єктів
- •2.1. Методи виявлення їх вражаючих факторів природних загроз.
- •2.2. Природні надзвичайні ситуації
- •3.1. Техногенні небезпеки та їх вражаючі фактори за генезисом і механізмом впливу.
- •3.2. Небезпечні події на транспорті та аварії на транспортних комунікаціях
- •3.3. Пожежна безпека.
- •3.4. Радіаційна безпека
- •4.1. Соціальні небезпеки
- •4.2. Фізіологічні чинники забезпечення безпеки людини
- •4.3. Психологічні важелі забезпечення безпеки людини
- •4.4. Сучасні інформаційні технології та безпека життєдіяльності людини
- •4.5. Види тероризму, його первинні, вторинні та каскадні вражаючі фактори
- •5.1. Загальний аналіз ризику і проблем безпеки складних систем, які охоплюють людину (керівник, оператор, персонал, населення), об'єкти техносфери та природне середовище
- •5.2. Головні етапи кількісного аналізу та оцінки ризику.
- •5.3.Методичні підходи до визначення ризику.
- •5.4. Принципи забезпечення безпечної життєдіяльності
- •5.8. Нормативні документи, що регламентують усунення зовнішніх сталих чинників ризику особи
- •6.1. Правові норми, що регламентують організаційну структуру органів управління безпекою та захистом у нс, процеси її функціонування і розвитку, регламентацію режимів запобігання і ліквідації нс.
- •6.2. Управління безпекою життєдіяльності
- •6.6. Загальні засади моніторингу нс та порядок його здійснення. Моніторинг небезпек життєвого середовища людини в Україні
- •7.1. Організація і проведення рятувальних та інших невідкладних робіт у районах лиха
- •7.2. Особливості проведення деяких невідкладних робіт у районах лиха
- •7.3. Знезаражування споруд, техніки, предметів та спеціальна обробка людей
- •Internet-джерела
- •Тема 2 «Природні загрози, характер їх проявів та дії на людей,
- •Тема3 Підтема 3.1 «Пожежна безпека »
- •Додаткові теми рефератів:
- •Тема3 Підтема 3.2 «Радіаційна безпека»
- •Закони України :
- •Вимоги документів магате :
- •Тема3 Підтема 3.3
- •Тема 4 Заняття 2
- •Тема 5 Заняття 2
- •Тема 6 Заняття 2
- •Стратегічний менеджмент
- •Тема 6 Заняття 3
- •Тема 7 Заняття 2
- •Двнз червоноградський гірничо-економічний коледж
- •Тема: «Вибір варіанту захисту персоналу об’єкта господарської діяльності на підставі оцінки радіаційної обстановки, що склалася на огд внаслідок аварії на аес»
- •Коефіцієнт послаблення радіації спорудами і транспортними засобами Кпос
- •Тема 1. 5
- •Тема3.2. 64
2.1. Методи виявлення їх вражаючих факторів природних загроз.
Спектроскопічні методи
Спектроскопічними методами аналізу називають методи, що засновані на взаємодії речовини з електромагнітним випромінюванням. Розрізняють методи атомної та молекулярної спектроскопії. Методи атомної спектроскопії засновані на явищі поглинання (наприклад, атомно-абсорбційний) та виділення (наприклад, емісійна фотометрія полум'я) світла вільними атомами, а також їх люмінесценції (наприклад, атомно-флуоресцентний). Методи оптичної молекулярної спектроскопії в залежності від характеру взаємодії випромінювання з досліджуваною речовиною та способу їх вимірювання поділяють на: абсорбційну спектроскопію, турбідіметрію, люмінесцентний аналіз.
Абсорбційна спектроскопія, тобто аналіз за поглиненим випромінюванням включає:
o спектрофотометричний аналіз - заснований на визначенні спектру поглинання або вимірюванні світлопоглинання при визначеній довжині хвилі, ця спектральна лінія відповідає максимуму кривої поглинання даної речовини;
o фото колориметричний аналіз - заснований на вимірюванні інтенсивності забарвлення досліджуваного розчину або порівнянні її з інтенсивністю забарвлення стандартного розчину з застосуванням спрощених способів монохроматизації (світлофільтри).
Аналіз, заснований на використанні розсіювання світла зваженими частинками (нефелометрія) та поглинання світла в результаті світлорозсіювання (турбідіметрія).
Молекулярний люмінесцентний аналіз (флуориметричний) заснований на вимірюванні інтенсивності випромінювання, що утворюється в результаті поглинання фотонів молекулами.
Електрохімічні методи
В основі електрохімічних методів аналізу та дослідження лежать процеси, що відбуваються на електродному просторі. Відомо два різновиди електрохімічних методів: без проходження електродної реакції (кондуктометрія) та засновані на електродних реакціях - у відсутності струму (потенціометрія) або під струмом (вольтамперометрія, кулонометрія, електрогравіметрія). Всі електрохімічні виміри проводять з використанням електрохімічної чарунки - розчину, в якому знаходяться електроди. Електродів може бути два або три: індикаторний, діючий як датчик, реагуючий на склад розчину або інший фактор впливу, або робочий електрод, якщо під дією струму в електричній чарунці відбувається значні зміни складу речовини, електрод порівняння та іноді допоміжний електрод. Електрод порівняння призначений для створення вимірювального ланцюга та підтримування постійного значення потенціалу індикаторного (робочого) електроду. Допоміжний електрод включають разом з робочим електродом в ланцюг, через який проходить електричний струм. На електродах відбуваються різноманітні фізичні та хімічні процеси, ступінь проходження яких визначають шляхом виміру напруги, сили струму, електричного опору, електричного заряду або рухливості заряджених часток в електричному полі.
Також розрізняють прямі та непрямі електрохімічні методи. В прямих методах використовують функціональну залежність сили струму (потенціалу) від концентрації компоненту, що визначається. В непрямих методах силу струму (потенціал) вимірюють з метою знаходження кінцевої точки титрування компоненту, що визначається певним титрантом, тобто використовують функціональну залежність параметру, що вимірюється від об'єму титранту.
Хроматографічні методи
Хроматографічні методи володіють найбільшим спектром можливостей для контролю забруднення різних об'ємів навколишнього середовища.
Хроматографічні методи засновані на сорбційних процесах - поглинання газів, пари або розчинених речовин твердим або рідким сорбентом. Сорбцію можна провести двояко: в статичних (до встановлення рівноваги) та динамічних умовах. Динамічна сорбція являє собою процес, в якому відбувається направлене переміщення рухливої фази відносно нерухливої. Сутність усіх хроматографічних методів полягає в тому, що речовини, які розділяють разом з рухливою фазою переміщуються через шар нерухливого сорбенту з різною швидкістю за рахунок різної здатності до сорбування. Інакше кажучи, хроматографія - динамічний сорбційний процес розділення сумішей, заснований на розподіленні речовини між двома фазами, одна з яких рухлива, а інша - нерухлива, та зв'язана з багатократним повторюванням актів сорбції - десорбції.
Хроматографічні методи класифікують за наступними ознаками:
- за агрегатним станом суміші, в якій проводять її розділення на компоненти, - газова, рідинна та газорідинна хроматографії;
- за механізмом розділення - адсорбційна, розподільча, іонообмінна, осадочна окислювально-відновна, адсорбційно-комплексоутворююча хроматографія та ін.;
- за формою проведення хроматографічного процесу - колонкова, капілярна, площинна (паперова, тонкошарова та мембранна);
- за способом отримання хроматограф (фронтальний, елюєнтний, витискуючий).
Радіометричний аналіз
Радіометрія - виявлення та вимірювання числа розпадів атомних ядер в радіоактивних джерелах або деякій їх частині за випромінюванням, що виділяють ядра.
Методи реєстрації іонізуючого випромінювання: Іонізаційний метод заснований на вимірюванні ефекту взаємодії випромінювання з речовиною - іонізації газів, що заповнює реєстраційний прилад. Іонізаційні детектори випромінювання представляють собою заряджений електричний конденсатор (електроди), що знаходяться в герметичній камері, яка заповнена повітрям або газом, для створення в камері електричного поля. Заряджені частки, що потрапили до камери детектора, утворюють в ній первинну іонізацію газового середовища; кванти спочатку утворюють швидкі електрони в стінці детектора, які потім викликають іонізацію газу в камері. В результаті утворення іонних пар газ стає провідником електричного струму. При відсутності напруги на електродах всі іони, що з'явилися при первинній іонізації, переходять в нейтральні молекули, а при зростанні напруги під дією електричного поля іони починають спрямовано рухатись, тобто виникає іонізаційний струм. Сила струму є кількісною мірою випромінювання та може бути зареєстрована приладом.
Сцинтиляційний метод - в основі сцинтиляційного детектора лежить здатність деяких речовин перетворювати енергію ядерних випромінювань в фотони видимого та ультрафіолетового світла. Механізм цього процесу достатньо простий. Ядерні частки (або вторинні електрони, що утворюються при поглинанні γ-квантів) переводять молекули сцинтилятору в збуджений стан. Перехід молекул сцинтилятору в основний стан супроводжується виділенням фотонів в УФ- або видимій області. Кожен окремий спалах, що утворився в результаті проходження ядерної частинки або у-кванту, називаютьсцинтиляцією. Окремі спалахи реєструються фотоелектронним множником, що перетворює світлові імпульси в електричні, які посилюються лінійним або логарифмічним посилювачем. Потім електричні імпульси проходять через дискримінатор, що пропускає імпульси визначеної амплітуди та відсікає "шуми" та потрапляє на реєструючий прилад.
Біоіндикація - це оцінка стану довкілля за реакцією живих організмів. Залежно від властивостей використовуваного біоіндикатора розрізняють специфічну і неспецифічну біоіндикацію. Коли різні антропогенні фактори викликають відповідні реакції, то мова йде про неспецифічну біоіндикацію. Якщо зміни, що відбуваються, можна пов'язати тільки з одним фактором, то йдеться про специфічну біоіндикацію. В якості біоіндикаторів використовують тварин, рослини, бактерії, віруси.
Біоіндикатори - це живі організми, за наявністю, станом і поведінкою яких можна робити висновки про ступінь зміни довкілля, у тому числі про наявність забруднюючих речовин. Живі індикатори мають істотні переваги, вони підсумовують усі без винятку біологічно важливі дані про забруднення, вказують швидкість змін, що відбуваються, шляхи і місця накопичень в екосистемах різних токсикантів, дозволяють судити про ступінь шкідливості певних речовин для живої природи й людини.