
- •Конспект лекций Является базовым конспектом для подготовки машинистов на все виды тяги.
- •1. Раздел. Электричество. Постоянный ток.
- •1.1. Введение
- •1.2. Основные сведения о строении вещества.
- •1.3. Физическая природа электричества
- •1.4. Электрические заряды и их взаимодействие.
- •1.5. Электрическое поле.
- •1.6. Характеристики электрического поля.
- •1.7. Электрический ток.
- •1.8. Виды токов.
- •1.9. Электрическое сопротивление.
- •1.10. Проводимость.
- •1.11. Электродвижущая сила (эдс).
- •1.12. Элементы электрической цепи.
- •1.13. Законы Ома.
- •1.14. Режимы работы электрических цепей.
- •1.15. Законы Кирхгофа.
- •1.16. Способы соединения потребителей электроэнергии.
- •1. Последовательное соединение
- •2. Параллельное соединение
- •3. Смешанное соединение (мостовая схема)
- •1.17. Способы соединения источников тока.
- •1. Последовательное соединение.
- •2.Параллельное соединение
- •3. Смешанное соединение
- •1.18. Работа и мощность электрического тока
- •1.19. Тепловое действие тока.
- •1.21. Переходное сопротивление.
- •2. Раздел. Электромагнетизм.
- •2.1. Свойства магнитов.
- •2.2. Магнитное поле
- •2.3. Характеристики магнитного поля.
- •2 .4. Природа ферромагнетизма.
- •2.5. Петля гистерезиса.
- •2.6. Магнитная цепь (магнитопровод). Закон Ома для магнитной цепи. Способы усиления магнитных полей.
- •Закон Ома для магнитной цепи:
- •2.7. Проводник с током в магнитном поле. (Преобразование электрической энергии в механическую).
- •2.8. Электромагнитная индукция.
- •2.9. Правило Ленца.
- •2.10. Самоиндукция.
- •2.12. Взаимоиндукция.
- •2.13. Вихревые токи.
- •3. Раздел. Электрические машины постоянного тока (эмпт).
- •3.1. Составные части машин постоянного тока и их назначение.
- •3.2. Якорные обмотки.
- •3.3. Уравнительные соединения.
- •3.4. Работа двигателя постоянного тока.
- •3.5. Типы двигателей постоянного тока.
- •3.6. Электромеханические характеристики двигателей постоянного тока
- •3.7 Реакция якоря.
- •Размагничивающее действие реакции якоря.
- •Увеличивается вероятность возникновения кругового огня по коллектору.
- •3.8. Способы уменьшения реакции якоря.
- •3.9 Коммутация
- •Механические причины искрения:
- •Электромагнитные причины искрения:
- •3.10. Работа генераторов постоянного тока.
- •1. Генератор с независимым возбуждением
- •2. Генератор с параллельным возбуждением
- •3. Генератор с последовательным возбуждением
- •4. Генератор со смешанным возбуждением
- •Виды потерь:
- •4. Раздел. Химические источники тока
- •Кислотные аккумуляторы.
- •Щелочной аккумулятор.
- •5. Раздел. Переменный ток.
- •5.1. Параметры переменного тока.
- •5.2 Сопротивление в цепях переменного тока.
- •5.3. Мощность в цепи переменного тока.
- •5.4. Трехфазный ток. Синхронный генератор.
- •5.5. Соединение фаз генератора (источника тока) и потребителя по схеме «звезда»/«звезда» (с нулевым проводом).
- •5.6. Схема соединения фаз генератора и потребителя «треугольник»/ «треугольник».
- •5.7. Асинхронный двигатель.
- •6. Раздел. Трансформаторы.
- •7. Раздел.
- •7.1. Реакторы
- •7.2. Дроссели.
- •7.3. Магнитный усилитель.
- •8. Раздел. Полупроводниковые приборы.
- •8.2. Электронно-дырочный переход.
- •8.3. Полупроводниковые диоды
- •Вольт-амперная характеристика диода (вах).
- •8.4. Транзисторы
- •8.5. Тиристоры
- •8 .6 Выпрямление переменного тока
- •1. Однополупериодная однофазная схема выпрямления.
- •2 . Двухполупериодная схема выпрямления с нулевым выводом трансформатора.
- •3. Двухполупериодная однофазная мостовая схема выпрямления.
- •4. Сглаживание пульсаций выпрямленного тока.
- •7. Раздел. Электроизмерительные приборы
5. Раздел. Переменный ток.
Получают обычно с помощью 3-х фазных синхронных генераторов или с помощью 1-но фазных генераторов, которые в отличие от генераторов постоянного тока вместо коллектора имеют 2 контактных кольца.
5.1. Параметры переменного тока.
Период Т, [c] – это время, за которое происходит полный цикл изменения тока.
2. Частота f , [Гц] (герц) – это количество колебаний (периодов) за 1 секунду.
3. Амплитуда im, um, pm, em – это максимальное значение переменной величины за период.
4. Мгновенное значение i, u, p, e – это значение переменной величины, в какой-либо момент времени.
5. Действующее значение I, U, P, E – под действующим значением переменного тока понимают такую величину постоянного тока, при которой выделяется столько же энергии, сколько при переменном токе.
I=im/√2=0.7*im
U= um /√2
6. Фаза – это математическая величина, это когда период разделяют на 360 частей (один оборот ротора) и поэтому фазу измеряют не в секундах, а в электрических градусах.
Можно выделить три варианта соотношения изменений тока и напряжения:
Совпадение по фазе – когда две переменные величины изменяются синхронно (Резонанс).
Сдвиг по фазе – когда две переменные величины изменяются не синхронно. Сдвиг по фазе это термин математический, физически означает сдвиг по времени изменения.
В противофазе – смещение тока относительно напряжения на половину периода ( на 180 эл.град.)
5.2 Сопротивление в цепях переменного тока.
Д
елится
на активное и реактивное. На активном
сопротивление (электрическом сопротивлении
R)
- выделяется энергия. Им обладают
резисторы, реостаты, провода. На реактивном
сопротивлении энергия не выделяется.
Им обладают катушки и конденсаторы.
5.2.1.
Активное сопротивление в цепи переменного
тока
(электрическое сопротивление -
R).
Если в цепях переменного тока отсутствуют катушки и конденсаторы, то в такой цепи ток и напряжение совпадают по фазе. А т.к. мгновенное значение мощности в любой момент времени определяется p=u*i, то энергия на активном сопротивлении выделяется двумя импульсами за период, а ее среднее, т.е. действующее значение равно половине максимального P=pm/2.
При прохождении постоянного тока по проводнику он равномерно распределяется по всему сечению проводника, и проводник в данном случае обладает омическим (электрическим) сопротивлением R.
При прохождении переменного тока по этому же проводнику он будет протекать только по поверхности проводника - кольцу (поверхностный эффект), а проводник в данном случае обладает реактивным сопротивлением - Х.
Поэтому, активное сопротивление проводника всегда больше его омического (электри-ческого) сопротивления из-за поверхностного эффекта.
5.2.2. Катушка индуктивности в цепи переменного тока.
П
ри
наличии в цепи катушки из-за явления
самоиндукции в этой цепи ток отстает
по фазе от напряжения на четверть
периода. При этом мощность имеет, то
положительное, то отрицательное значение,
а ее среднее, т.е. действующее значение
равно «0». Это значит, что катушка энергию
не потребляет, а лишь обменивается ею
с источником.
P=0, XL=2π*f*L
Выводы:
Катушка не может быть потребителем.
Катушка может использоваться для сдвига фаз.
Катушка ограничивает переменный ток, оказывая ему дополнительное индуктивное сопротивление (XL=2π*f*L).
Катушки используют для создания магнитного потока.
Примечание: при нарастании электрического тока катушка накапливает энергию в виде магнитного поля, а при убывании электрического тока катушка, размагничиваясь, отдает энергию в электрическую цепь в виде ЭДС самоиндукции.
5.2.3. Конденсаторы в цепях переменного тока.
Конденсаторы - это устройства, способные накапливать электрические заряды.
Состоят из двух пластин, разделенным диэлектриком.
При подключении к внешнему источнику заряжается да его напряжения, при отключении способны долго сохранять накопленный заряд, являясь самостоятельным источником.
Емкость конденсатора С характеризует накопленный в нем заряд Q (при напряжении 1В). Измеряется в [Ф] в фарадах.
C=Q/U
Прим. С увеличением площади перекрывания пластин и уменьшения расстояния между ними емкость увеличивается, поэтому, чтобы увеличить емкость с помощью нескольких конденсаторов их включают параллельно, а чтоб уменьшить емкость – последовательно.
При включении конденсатора в цепь переменного тока происходит процесс непрерывного его разряда и заряда. При заряде в конденсаторе растет ЭДС направленная против ЭДС источника, из-за чего изменение напряжения отстает по фазе от тока на одну четвертую часть периода, а току оказывается сопротивление, которое называется емкостным. Xc=1/(2π*f*C)
Вывод:
Конденсатор, как и катушка, энергию (в цепи переменного тока) не потребляет.
Как и катушки, конденсатор может использоваться для сдвига фаз.
Чем больше частота тока (f), тем сопротивление конденсатора меньше, т.е. при постоянном токе он размыкает цепь.
Конденсатор может использоваться для накопления электроэнергии и временно работать как источник.