
- •Вступ в 1. Загальні відомості
- •Контрольні запитання
- •1.1. Особливості конструкції трансформаторів малої потужності
- •1.5. Електромагнітні перетворювачі частоти
- •1.11. Імпульсні трансформатори
- •Контрольні запитання
- •Розділ 2. Трансформаторні перетворювачі частоти й числа фаз та імпульсні
- •2.1 Трансформатори для перетворення числа фаз
- •2.2. Електромагнітні перетворювачі частоти
- •2.3. Імпульсні трансформатори
- •Контрольні запитання
- •Розділ 4. Трансформатори з регулюванням вторинної напруги
- •4 .1 Трансформатори з перемиканням відгалужень обмоток без збудження
- •4.4. Трансформатори, які регулюються підмагнічуванням шунтів
- •4.5. Трансформатори послідовного вмикання
- •4.6. Трансформатори з рухомою вторинною обмоткою
- •4.7. Індукційні та фазорегулятори [1]
- •4.7.1. Принцип дії індукційного регулятора
- •4.7.2. Струми й потужність індукційного регулятора
- •4.7.3. Здвоєний індукційний регулятор
- •Контрольні запитання
- •5.1. Трансформатори напруги
- •5.2. Трансформатори струму
- •5.3. Випробувальні трансформатори
- •5.4 Трансформатори пожежо- та вибухобезпечні
- •5.5. Зварювальні трансформатори
- •Контрольні запитання
- •Розділ 6. Тягові трансформатори
- •6.1. Умови роботи тягових трансформаторів
- •6.2 Трансформатори для різних систем регулювання напруги
- •6.3. Конструктивні особливості тягових трансформаторів
- •6.4. Системи охолодження тягових трансформаторів
- •Контрольні запитання
- •Розділ 7. Надпровідність та перспективи її застосування в трансформаторобудуванні
- •7.1 Загальні відомості
- •7.2 Надпровідники
- •7.3. Композитні провідники
- •7.4 Надпровідні обмотки
- •Контрольні запитання
- •8.1 Загальні відомості
- •8.2 Найбільш характерні області застосування реакторів
- •8.3. Надпровідні індуктивні накопичувачі енергії
- •Контрольні запитання
- •Література до вступу та частини 1
- •Зміст частини першої стор.
- •Контрольні запитання...............................................................
- •Контрольні запитання...............................................................
- •Контрольні запитання...............................................................
- •Контрольні запитання.................................................................
- •Контрольні запитання...................................................................
- •Контрольні запитання................................................................
- •Контрольні запитання..................................................................
- •9.1. Створення обертового магнітного поля в електричних машинах змінного струму
- •9.2. Вмикання трифазних асинхронних двигунів для живлення від однофазної мережі
- •9.3 Розщіплювачі фаз
- •9.3.1. Синхронні розщіплювачі фаз
- •Асинхронні розщіплювачі фаз
- •10.1 Застосування й основні функції електричних мікродвигунів
- •10.2 Класифікація виконавчих мікроелектродвигунів
- •10.3 Вимоги до виконавчих мікроелектродвигунів
- •10.3.2 Самохід виконавчих двигунів
- •10.3.3 Швидкодія
- •10.3.4. Відсутність радіозавад
- •10.3.5. Безшумність роботи
- •11.1. Принцип дії двофазного виконавчого асинхронного мікродвигуна
- •11.3. Гіроскопічні, моментні й тороїдні асинхронні двигуни
- •13.3.1. Гіроскопічні асинхронні двигуни
- •11. 3. 2. Моментні асинхронні двигуни
- •11. 3. 3. Тороїдні двигуни [39]
- •11. 4. 1 Амплітудне керування
- •11.4.2. Фазове керування
- •11.4.3. Просторове керування
- •11.4.4. Амплітудно-фазове керування
- •11.4.5. Комбіноване керування
- •12.1. Загальна характеристика й класифікація синхронних мікродвигунів
- •12.2. Синхронні виконавчі двигуни з постійними магнітами
- •12.3. Реактивні двигуни [40]
- •12.3.1. Переваги й недоліки синхронних реактивних двигунів
- •12.3.2. Обертаючий момент і електромагнітна потужність синхронних реактивних двигунів (срд)
- •12.3.3. Конструкція синхронних реактивних двигунів
- •12.3.4. Пуск срд
- •12.3.5. Коливання ротора срд
- •12.3.6. Однофазні й двофазні срд
- •12.3.7. Редукторний двигун
- •12.4. Гістерезисні двигуни
- •12.4.1. Коливання ротора гістерезисного двигуна
- •12.4.2. Однофазний синхронний гістерезисний двигун з екранованими полюсами
- •12.5. Крокові двигуни
- •Розділ 13. Виконавчі двигуни постійного струму
- •13.2. Способи керування виконавчими двигунами постійного струму
- •13.2.1. Якірне керування
- •13.2.2. Полюсне керування
- •13.2.3. Імпульсне керування виконавчими двигунами постійного струму [25]
- •13.2.4. Безколекторний мікропривод постійного струму
- •13.3. Пускові властивості й реакція якоря виконавчих двигунів постійного струму
- •13.4. Порівняння різних способів керування виконавчими двигунами постійного струму
- •13.5. Універсальний колекторний двигун
- •14.1. Конструкція, принцип дії, переваги й недоліки синхронних двигунів з ротором, який котиться
- •14.2. Параметри й застосування синхронних дкр
- •14.3. Різні виконання й класифікація електричних машин з ротором, який котиться (емкр)
- •14.4. Хвильові електродвигуни
- •14.5. Пускові й динамічні властивості двигунів з ротором, який котиться
- •15.1. Загальні відомості про тахогенератори
- •15.2. Конструктивні особливості й застосування тахогенераторів
- •15.3. Вихідна характеристика тахогенераторів постійного струму
- •15.4. Погрішності тахогенераторів постійного струму та способи їх зменшення
- •15.5. Переваги й недоліки тахогенераторів постійного струму. Робота в режимі акселерометра
- •15.6. Принцип дії асинхронного тахогенератора. Еквівалентна схема
- •15.7. Вихідна характеристика асинхронного тахогенератора
- •15.8. Погрішності асинхронного тахогенератора та способи їх зменшення
- •15.9. Застосування асинхронних тахогенераторів. Переваги й недоліки
- •15.10. Синхронний тахогенератор
- •16.1. Загальна характеристика, застосування та класифікація машин систем синхронної передачі
- •16.2. Трифазні синхронні передачі
- •16.3 Контактні однофазні сельсини
- •16.3.1 Конструкція контактних однофазних сельсинів
- •16.3.2. Робота контактних сельсинів у індикаторному режимі
- •16.3.3 Робота контактних сельсинів у трансформаторному режимі
- •16.4 Одновісні сельсини
- •16.5. Безконтактні сельсини
- •16.6. Магнесини
- •16.7. Диференціальний сельсин
- •16.8. Спеціальні режими роботи сельсинів
- •16.9. Погрішності в сельсинах та способи їх зменшення
- •16.10. Сельсин-двигун
- •17.1. Загальна характеристика, застосування й основні режими роботи поворотних трансформаторів
- •17.2. Принцип роботи поворотного трансформатора
- •17.3. Симетрований синусно-косинусний поворотний трансформатор
- •17.4. Лінійний поворотний трансформатор
- •17.5. Поворотний трансформатор–побудувач та перетворювач координат
- •17.6. Масштабний поворотний трансформатор
- •17.7. Робота поворотного трансформатора в режимі фазообертача
- •17.8. Трансформаторна синхронна передача на поворотних трансформаторах
- •17.9. Погрішності поворотних трансформаторів та способи їх зменшення
- •Зміст частини другої стор.
- •Розділ 13. Виконавчі двигуни постійного струму…………………..
16.9. Погрішності в сельсинах та способи їх зменшення
Погрішності синхронних передач кута з сельсинами можливо поділити на три групи: технологічні, конструктивні та експлуатаційні.
Технологічні погрішності визначаються недоліками у виготовленні сельсина. Це неточність статичного й динамічного балансування, перекіс ротора, нерівномірність повітряного зазору машини; неоднаковість магнітних властивостей сталі машини в різних радіальних напрямах; різні опори обмоток; наявність короткозамкнених витків.
Майже всі похибки сельсинів при повороті ротора змінюються періодично. Для різних видів похибок число періодів за один оберт різне. Від неточності балансування ротора – один період, за рахунок неточностей у виготовленні – два періоди і т. д.
В динамічному режимі роботи індикаторних сельсинів при неточному балансуванні ротора внаслідок періодичної дії сил ваги виникають вимушені коливання ротора.
При критичних швидкостях обертання частота вимушених коливань дорівнює власній частоті коливань ротора. Тому похибка передачі так зростає, що може призвести до порушення нормальної роботи передачі.
За нерівності параметрів променів обмотки синхронізації похибки зменшують вмиканням додаткових активних, індуктивних та ємнісних опорів.
Погрішності, які викликані конструктивними обмеженнями, виникають внаслідок несинусоїдності просторової кривої МРС (недосконалість обмоток та зубчаста будова статора й ротора; насичення магнітного ланцюга; інерційності ротора; наявності тертя в ковзних контактах, підшипниках і т. д.; у зв’язку з наявністю зовнішнього демпфера).
Внаслідок наявності зубцевих гармонік поля періодичність похибки за один оберт становить z±1, де z – число пазів ротора.
Похибки від несинусоїдності МРС в індикаторних сельсинах виявляються менше, ніж в трансформаторних, внаслідок двостороннього живлення. Для зменшення цих похибок застосовують скорочення кроку обмотки, скіс пазів ротора й статора. Наявність демпферної обмотки в трансформаторному сельсині екранує поперечний магнітний потік та підвищує точність роботи.
Квадратична залежність Мстах(U), яка визначена формулою (16.49), справедлива лише при ненасиченому магнітному ланцюзі машини. Якщо магнітний ланцюг насичений, то у зв’язку з не однаковим магнітним станом сельсинів виникає різний ступінь залежності Мстах(U) у індикаторних та Е(U) у трансформаторних сельсинів. Це призводить до появи додаткової кутової або потенціальної похибки.
Тому сельсини виконують з ненасиченим магнітним ланцюгом, а для трансформаторних сельсинів застосовують як магнітний матеріал пермалой. В динамічному режимі виникає похибка, яка обумовлена моментом інерції ротора. Вона визначається коефіцієнтом динамічної добротності, який визначається формулою (12.3).
Як в статиці, так і в динаміці виявляється момент тертя в підшипниках, ковзних контактах і т. д. При цьому похибка визначається статичним коефіцієнтом добротності, який визначається формулою (12.2).
Наявність зовнішнього демпфера створює навантаження на валу сельсина-приймача. Тому виникає додатковий кут непогодженості (похибка).
В трансформаторному режимі, особливо при обертанні сельсинів, на вихідній обмотці сельсина-приймача з’являється напруга, яка не зникає навіть при θ=0 (нульовий сигнал). У загальному вигляді нульовий сигнал не співпадає за фазою з вихідною напругою Е (рис.16.9) і може бути розкладений на складові: яка співпадає за фазою з Е (напруга похибки) та зсунуту відносно Е на 90º (залишкова напруга за основною гармонікою). Крім того, виникають залишкові ЕРС вищих часових гармонік. Основні причини появи нульового сигналу – конструктивні та технологічні обмеження у виготовленні. Зкомпенсувати нульовий сигнал можливо підбираючи та встановлюючи додаткові опори в ланцюзі обмоток синхронізації.
Експлуатаційні погрішності виникають внаслідок коливань мережевих напруг та частоти, змін температури обмоток та оточуючого середовища, нерівномірної швидкості обертання ротора сельсина, великої швидкості обертання (швидкісна похибка), відносно великих струмів навантаження в трансформаторних та моменту навантаження в індикаторних сельсинах. Коливання мережевої напруги, у зв’язку із залежністю Мстах від U2, допускаються не більше, ніж ±10% від Uн.
Розглянемо вплив на погрішності змін частоти мережевої напруги. ЕРС, яка індукується в обмотці А1 (рис.16.5) при θ=0:
,
тобто
.
(16.100)
З іншого боку:
.
(16.101)
Синхронізуючий момент:
.
(16.102)
Враховуючи у (16.102) формули (16.100), (16.101), одержимо:
.
(16.103)
Оскільки в формулі (16.101) вважалось, що r≈0, у залежності (16.103) одержано ƒ2. В дійсності r має такий же порядок, як і х. Тому степінь ƒ буде дещо меншим від двох.
Якщо зі змінною частотою f величина Em остається незмінною (U=const), то Мс змінюється зворотнопропорційно ƒ2. Якщо ж зі зміною ƒ змінюється U, то Мс змінюється в малих межах. Звичайно ƒ коливається в межах ±5%.
Зі зміною температури обмоток змінюється їх опір, тому змінюється й Мс.
Нерівномірна швидкість обертання створює додаткові динамічні похибки внаслідок впливу моменту інерції ротора приймача.
З формули (16.51) можливо зробити висновок про те, що зі збільшенням відносної швидкості ν зменшується динамічний момент МД. Тому зростає швидкісна динамічна похибка синхронної передачі. Тому при даній дійсній швидкості обертання величину ν зменшують за рахунок підвищення синхронної швидкості ωс, тобто підвищенням частоти до 400÷500 Гц.
Якщо сельсин-трансформатор живить вхід електронного або напівпровідникового підсилювача, то струмом в обмотці можливо знехтувати, вважаючи Uвих=Е. Якщо ж zн малий (вхід магнітного підсилювача), то створюється погрішність, яка залежить від zн:
.
(16.104)
Крім того, внаслідок впливу реакції якоря змінюються магнітний потік Ф та ЕРС Етах, що призводить до додаткових погрішностей.
В залежності від допустимих погрішностей сельсини поділяються на класи точності. Для індикаторних сельсинів існує три класи точності:
-
Клас точності
1
2
3
Δθтах в градусах
0.5
1.0
1.5
Трансформаторні сельсини поділяють на шість класів:
-
Клас точності
1
2
3
4
5
6
Δθтах в мінутах
±1
±2
±5
±10
±20
±30
Якщо використовувати сельсини-трансформатори в індикаторному режимі, то внаслідок малої крутості початкової частини характеристики М(θ) передача буде виконуватись зі значними похибками.
Для визначення похибок в індикаторних сельсинах відхиляють вал датчика послідовно на кути 10º, 20º і т. д. до 360º. При цьому вимірюють положення валу приймача в погодженому положенні. Дослід проводиться для двох напрямів та будується крива Δθ(θд). Максимальна середня статична похибка, яка визначає клас точності сельсина, визначається, як
.
(16.105)
Точність трансформаторних сельсинів визначається аналогічно, причому погодженим вважається положення, при якому Е=Етіп. За числом періодів зміни похибок можливо визначити їх природу.