Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Руководство для арбитров ФИДЕ.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
3.83 Mб
Скачать

Пример обмена тремя игроками:

Список обменов S1:

5,4,3 5,4,2 5,4,1 5,3,2 5,3,1

5,2,1 4,3,2 4,3,1 4,2,1 3,2,1

Список обменов S2:

6, 7, 8 6, 7, 9 6, 7,10 6, 7,11 6 8, 9

6, 8,10 6, 8,11 6, 9,10 6, 9,11 6,10,11

7, 8, 9 7, 8,10 7, 8,11 7, 9,10 7, 9,11

7,10,11 8, 9,10 8, 9,11 8,10,11 9,10,11

  1. Обмен 5,4,3 из S1 с 6,7,8 из S2: разность = 9;

  2. Обмен 5,4,3 из S1 с 6,7,9 из S2: разность = 10;

  3. Обмен 5,4,2 из S1 с 6,7,8 из S2: разность = 10;

  4. Обмен 5,4,3 из S1 с 6,7,10 из S2: разность = 11;

  5. Обмен 5,4,3 из S1 с 6,8,9 из S2: разность = 11;

  6. Обмен 5,4,2 из S1 с 6,7,9 из S2: разность = 11; и т.д.

Точные процедуры обмена N (N= 1, 2, 3, 4...) игроков очковой группы из Р игроков

  • Сортируем все возможные подмножества N игроков из S1 в понижающем лексико-графическом порядке во множество S1LIST, которое может иметь элементы S1NLIST.

    Подмножества, которые мы сортируем в этом шаге, являются, например, теми, которые формируют “Список обменов S1” в “Примере обмена тремя игроками”. Точно так же следующий шаг дает “Список обменов S2” в том же самом примере.

  • Сортируем все возможные подмножества N игроков из S2 в возрастающем лексико-графическом порядке во множество S2LIST, которое может иметь элементы S2NLIST.

  • Для каждого возможного обмена между S1 и S2 может быть определенa разность, которая рассчитывается как:

(Сумма номеров игроков из S1, включенных в этот обмен) – (Сумма номеров игроков из S2, включенных в этот обмен).

Полученная таким образом разность является разновидностью критерия “пре-дельного расстояния” (хотя в математическом смысле это не строго расстояние) между элементами множества обмениваемых игроков. Это “расстояние” прости-рается от минимума, который имеет место, когда мы обмениваем N последних игроков из S1 с N первыми игроками из S2, до максимума, который имеет место, когда мы обмениваем N первых игроков из S1 с N последними игроками из S2. Зна-чения минимума и максимума зависят как от размера S1, так и от размера S2, где N - количество обмениваемых игроков.

В функциональном отношении:

DIFFERENZ (I, J) = (сумма номеров игроков S2 в подмножестве J – сумма номеров игроков S1 в подмножестве I).

У этой разности есть минимум: DIFFMIN = DIFFERENZ(1,1)

и максимум DIFFMAX = DIFFERENZ(S1NLIST, S2NLIST)

Далее правильный алгоритм процедуры нахождения обменов:

1 DELTA = DIFFMIN

2 I=1 J=1

3 If DELTA = DIFFERENZ(I,J) then делаем этот обмен, after that goto 4

4 If J<S2NLIST then J=J+1 goto 3

5 If I<S1NLIST then I=I+1, J=1 goto 3

6 DELTA =DELTA+1

7 If DELTA > DIFFMAX goto 9

8 goto 2

9 Возможности обмена N игроков исчерпаны.

В соответствии с A.2 после каждого обмена как S1, так и S2 должны быть упорядочены.

D.3. Обмен спущенных игроков

Пример: M0 равняется 5. Первоначальное положение игроков в S1 {1, 2, 3, 4, 5}.

Элементы в S1 начинаются с M1 самых вышестоящих игроков, далее в порядке понижения приоритета:

Элементы S1 в порядке понижения приоритета

М1 = 5

М1 = 4

М1 = 3

М1 = 2

М1 = 1

М0 = 5

1 – 2 – 3 –

1 – 2 – 3 –

1 – 2 – 3

1 – 2

1

1 – 2 – 3 –

1 – 2 – 4

1 – 3

2

1 – 2 – 4 –

1 – 2 – 5

1 – 4

3

1 – 3 – 4 –

1 – 3 – 4

1 – 5

4

2 – 3 – 4 –

1 – 3 – 5

2 – 3

5

1 – 4 – 5

2 – 4

2 – 3 – 4

2 – 5

2 – 3 – 5

3 – 4

2 – 4 – 5

3 – 5

3 – 4 – 5

4 – 5

Это правило используется во время шага C.8.b, чтобы выбрать спущенных игроков, которые будут исключены из жеребьёвки каждый раз, когда мы не сможем сделать жеребьёвку для всех.

Основной общий принцип, как всегда, заключается в минимально возможном наруше-нии жеребьёвки. Сначала мы попытаемся исключить из S1 последнего (нижнего) спу-щенного игрока, затем следующего за последним, потом третьего и так далее, по-ка мы не доберёмся, если это необходимо, даже до первого (включительно).

Если даже, делая это, нам не удасться выполнить жеребьёвку, мы попытаемся ис-ключить двух игроков за один раз, всегда пытаясь выбросить по возможности игро-ков, стоящих максимально низко. Далее мы попытаемся, при необходимости, исклю-чить трёх, четырёх игроков и так далее, пока не останется больше игроков.

D.4. Примечание для программистов: В-3 фактор в самой низшей очковой группе

После повторных применений правила C.13 вполне возможно, что в самой низшей очко-вой группе (СНОГ) соберутся игроки, набравшие различное количество очков, и жеребь-ёвку этой группы можно выполнить множеством способов.

Такая группа будет или однородной (когда количество игроков, вошедших из предпос-ледней очковой группы равно или больше количества игроков СНОГ), или в конечном счете образуется однородный остаток.

В программах жеребьёвки должно применяться следующее правило:

Лучшей жеребьёвкой для такой однородной очковой группы или однородного ос-татка будет жеребьёвка, которая минимизирует сумму среднеквадратических от-клонений между очками двух игроков в каждой паре (называемую B.3‐фактором). Получение освобождения от игры эквивалентно встрече с соперником, имеющим на одно очко меньше, чем игрок с наименьшим количеством очков (даже если это приводит к ‐1).

Когда мы рассматриваем такие сложные очковые группы, с которыми иногда стал-киваемся (особенно в нижней половине таблицы) к концу турнира, определение “B.3фактора” устанавливает уникальное (и, в целом, достаточно простое) правило выяснения, какая жеребьёвка является лучшей среди двух или более возможных ва-риантов.

Это правило представлено как “примечание для программистов”, но фактически оно имеет общее значение и, конечно, при необходимости должно также применяться при выполнении ручной жеребьёвки.

С другой стороны, как изложено в последнем параграфе, это правило не устанавли-вает какое-либо определённое поведение, а только расшифровывает типичное "обоснованное предположение арбитра”: например, оно говорит о том, что вместо того, чтобы составить одну пару с нулевой разностью очков между игроками и дру-гую с разностью в одно очко, предпочтительнее сформировать две пары, в кото-рых обе разности равны половине очка, или, более широко, лучше иметь много не-больших разностей, а не мало больших.

Для того чтобы полностью понять правило, наиболее целесообразно очень внима-тельно прочесть приведённые примеры.

Пример: Пусть в СПОГ входят следующие игроки:

3.0: A

2.5: B, C

2.0: D

1.5: E

1.0: F Игрок F может играть только с игроком А.

Первоначально жеребьёвка начинается с S1 = {A, B, C} S2 = {D, E, F} и после некоторых перестановок приводит к Png1: [S1 = {A, B, C} S2 = {F, D, E}]. Однако, работа не закончена. Должны быть использованы некоторые обмены, которые приводят к Png2: [S1 = {A, B, D} S2 = {F, C, E}], что является самой лучшей жеребьёвкой. Это из-за B.3‐ фактора. Давайте вычислим его:

Png1: (A‐F, B‐D, C‐E) => (2.0*2.0 + 0.5*0.5 + 1.0*1.0) = 5.25

Png2: (A‐F, B‐C, D‐E) => (2.0*2.0 + 0.0*0.0 + 0.5*0.5) = 4.25

Предупреждение: если есть седьмой игрок (G), набравший меньше 2.5 очков, который единственный может получить освобождение от игры, СНОГ является неоднородной, и никакие обмены в S1не допускаются. В таком случае жеребьёвка СНОГ имеет вид: A‐F, B‐D, C‐E, G (свободен).

Замечание: Этот алгоритм ничего особенного не представляет. Это наилучший мате-матический метод нахождения жеребьёвки, которую естественно достигнет арбитр, ви-дящий все данные игроков.