- •Частина і. Базові визначення, параметри та характеристики електронних систем
- •Електричні інформаційні сигнали та типові системи їх обробки
- •Частина іі. Активні компоненти електронних систем
- •Електронно-дірковий перехід - базова напівпровідникова структура твердотілих компонентів
- •Напівпровідникові діоди та їх використання
- •Біполярні транзистори
- •Польові транзистори
- •Інтегральні мікросхеми
- •Оптоелектронні напівпровідникові прилади
- •Частина ііі. Функціональні пристрої електронних систем
- •Електронні підсилювачі
- •Генератори незатухаючих електричних коливань та формувачі імпульсів
- •Вторинні джерела живлення
- •Передмова
- •1.2 Компоненти електронних систем
- •1.2.1 Класифікація
- •1.2.2 Пасивні компоненти
- •1.2.3 Активні компоненти – електронні прилади
- •1.3 Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом,
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6 Типові схемні елементи електронних систем
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3 Генератори напруги та струму
- •1.6.4 Моделювання електронних пристроїв
- •1.6.5 Дослідження диференціюючих rc-схем
- •1.6.5.2 Амплітудно-частотна характеристика диференціюючих схем
- •6.6 Дослідження інтегруючих rc-схем
- •1.6.6.2 Амплітудно-частотна характеристика інтегруючих схем
- •1.7 Радіотехніка, електроніка та радіоелектроніка
- •1.8 Аналогові та цифрові системи
- •1.9 Нова філософія сучасної техніки
- •1.10 Початкові засади електроніки та схемотехніки
- •1.11 Поточний самоконтроль
- •1.11.1 Завдання для дослідження схем в ms
- •1.11.2 Контрольні запитання
- •Частина іі. Активні компоненти електронних систем Розділ 2. Електронно-дірковий перехід – базова напівпровідникова структура твердотілих компонентів
- •2.1 Класифікація речовин за провідністю
- •2.2 Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4 Визначення та класифікація електричних переходів
- •2.5 Електронно-дірковий перехід в стані рівноваги
- •2.6 Пряме та зворотне вмикання едп
- •2.7 Вольт-амперна характеристика ідеалізованого едп
- •2.8 Ємнісні властивості p-n переходу
- •2.9 Пробій p-n переходу
- •2.10 Перехід метал-напівпровідник
- •2.11 Особливості р-n переходів та їх використання для побудови компонентів електронних систем
- •2.12 Поточний самоконтроль
- •2.12.1 Тестові контрольні запитання.
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1 Визначення, структура та класифікація
- •3.2 Вольт-амперна характеристика нд
- •3.3 Параметри нд
- •3.4 Електрична модель та частотні властивості нд
- •3.5 Основні види пробою нд
- •3.6 Основні типи діодів та електронні пристрої на їх основі
- •3.6.1 Випрямні діоди та випрямлячі
- •3.6.2 Високочастотні діоди
- •3.6.3 Імпульсні діоди та ключі
- •3.6.4 Напівпровідникові стабілітрони
- •3.6.5 Обмежувачі амплітуди
- •3.6.6 Варикапи та пристрої електронного регулювання частоти
- •3.8 Діоди Шотткі
- •3.8 Поточний самоконтроль
- •3.8.1 Завдання для моделювання та дослідження схем в ms
- •3.8.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1 Структури, режими та схеми вмикання
- •4.2 Фізичні процеси в бт
- •4.3 Статичні характеристики бт
- •4.3.1 Статичні характеристики бт із се
- •4.3.2 Статичні характеристики бт із сб
- •4.4 Температурний дрейф характеристик бт
- •4.5 Підсилення потужності еіс за допомогою бт
- •4.6 Графоаналітичний метод аналізу та розрахунку
- •4.7 Динамічні властивості бт
- •4.8 Ключовий режим бт
- •4.9 Порівняльний аналіз трьох схем вмикання бт
- •4.10 Власні шуми та шумові параметри транзисторів
- •4.11 Температурний режим та пробій бт
- •4.12 Основні типи бт
- •4.13 Поточний самоконтроль
- •4.13.1 Завдання для моделювання та дослідження схем
- •4.13.2 Контрольні запитання
- •Розділ 5. Польові транзистори
- •5.1 Типи польових транзисторів
- •5.2 Польовий транзистор з керувальним p-n‑переходом
- •5.3 Підсилювач з автоматичним зміщенням на пт
- •5.4 Польові транзистори з ізольованими затворами
- •5.5 Ключовий режим мдн-транзисторів
- •5.6 Температурні залежності та шуми пт
- •5.7 Класифікація та особливості використання пт
- •5.8 Порівняння польових та біполярних транзисторів
- •5.9 Поточний самоконтроль
- •5.9.2 Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1 Особливості імс як активних компонентів
- •6.2 Класифікація інтегральних мікросхем
- •6.3 Аналогові інтегральні мікросхеми
- •6.3.1 Основні типи аіс
- •6.3.2 Схеми стабілізації режиму а іс
- •6.3.3 Схеми зсуву рівнів напруг
- •6.4 Однокаскадні багатоцільові підсилювачі
- •6.5 Диференціальні підсилювачі
- •6.6 Операційні підсилювачі
- •6.6.1 Особливості оп
- •6.6.2 Інвертувальна схема вмикання оп
- •6.6.3 Неінвертувальна схема вмикання оп
- •6.6.4 Імпульсний режим оп
- •6.7 Поточний самоконтроль
- •6.7.1 Завдання для моделювання та дослідження схем в ms
- •6.7.2 Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1 Особливості оптоелектроніки
- •7.2 Джерела оптичного випромінювання
- •7.2.1 Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3 Випромінювальні діоди
- •7.3 Фотоелектричні напівпровідникові
- •7.3.1 Внутрішній фотоефект
- •7.3.2 Фоторезистори
- •7.3.3 Фотодіоди
- •7.3.4 Фототранзистори
- •7.4 Оптрони та оптоелектронні імс
- •7.5 Поточний самоконтроль
- •7.5.1 Завдання для моделювання та дослідження схем в ms
- •7.5.2 Контрольні запитання
- •Частина ііі. Функціональні пристрої електронних систем Розділ 8. Електронні підсилювачі
- •8.1 Визначення, структурні схеми
- •8.2 Основні характеристики та параметри еп
- •8.3 Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1 Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.2.2 Амплітудно-частотна та перехідна характеристики
- •8.3.3 Корекція лінійних та нелінійних спотворень
- •8.4 Зворотний зв`язок та його використання
- •8.4.1 Визначення та класифікація
- •8.4.2 Вплив зворотного зв`язку на основні параметри еп
- •8.4.3 Паразитні зворотні звязки в підсилювачах
- •8.5 Підсилювачі постійного струму
- •8.5.1 Визначення та класифікація
- •8.5.2 Підсилювачі постійного струму з безпосереднім зв`язком
- •8.5.3 Підсилювачі постійного струму
- •8.6 Вибірні (селективні) підсилювачі
- •8.6.1 Визначення та класифікація
- •8.6.2 Резонансні підсилювачі
- •8.6.3 Підсилювачі з частотно–залежним зворотним зв'язком
- •8.7 Підсилювачі потужності
- •8.7.1 Особливості побудови та класифікація
- •8.7.2 Безтрансформаторні підсилювачі потужності
- •8.8 Завдання для самоконтролю
- •8.8.1 Завдання для моделювання та дослідження схем в ms
- •8 .8.2 Контрольні запитання
- •Розділ 9. Генератори незатухачих електичних коливань та формувачі імпульсів
- •9.1 Визначення, умови самозбудження
- •9.2 Генератори гармонічних коливань
- •9.2.2 Низькочастотні rс –генератори
- •9.2.3 Стабілізація частоти коливань в автогенераторах
- •9.3 Автоколивальні мультивібратори
- •9.4 Загальмовані мультивібратори
- •9.5 Формувачі лінійно-змінної напруги
- •9.6 Завдання для самоконтролю
- •9.6.1 Завдання для моделювання та дослідження схем в ms
- •9.6.2 Контрольні запитання
- •Розділ 10. Вторинні джерела живлення електронних систем
- •10.1 Особливості енергетичної (силової) електроніки
- •10.2 Основні типи випрямлячів
- •10.3 Згладжувальні фільтри
- •10.3.1 Пасивні фільтри
- •10.3.2 Активні фільтри
- •10.4 Стабілізатори напруги
- •10.4.1 Параметричні стабілізатори напруги
- •10.4.2 Компенсаційні стабілізатори напруги
- •10.5 Завдання для самоконтролю
- •10.5.1 Завдання для моделювання та дослідження схем в ms
- •10.5.2 Контрольні запинтання
- •Список рекомендованої літератури
1.6.3 Генератори напруги та струму
При узгоджені за опорами першого каскаду підсилювача з виходом датчика, вихідних та вхідних опорів багатокаскадних підсилювачів, а також вихідного каскаду з кінцевими пристроями РЕА широко користуються поняттями щодо джерел постійної напруги та струму.
Генератором напруги або генератором електричної рушійної сили (е.р.с.) є джерело постійної або змінної напруги, яке має внутрішній опір Ri = 0. Це ідеальний випадок. Генератори напруги забезпечують постійну напругу на навантаженні при зміні його опору. В реальних схемах для визначення типу генератора оцінюють співвідношення опорів навантаження (наступного каскаду) та Ri (вихідного опору попереднього каскаду). Для пояснення цього положення та грамотного його використання звернемось до схеми подільника напруги (рис.1.11). Основне завдання генератора напруги - забезпечити постійну напругу на навантажені за зміни струму. Для згаданої схеми можна записати:
Uн = Е – Iн .
В даному випадку R1 розглядається як внутрішній опір генератора. За умови, коли R1 << R2, тобто R1 << Rн можна допустити R1= 0, а значить Uн = Е = const. Наприклад, якщо R1 = 1 кОм, а R2 = 100 кОм, маємо генератор постійної напруги. Напруга на навантажені (R2) буде залишатись незмінною (майже незміною) при зміні опору навантаження в межах приблизно від 10 кОм і більше, тому в таких межах з допустимою похибкою джерело можна вважати генератором напруги. Таким чином, генератори напруги мають внутрішній опір значно менший, ніж опір навантаження. Електронні пристрої, які побудовані на електронних вакуумних лампах мають зазвичай великий вхідний опір (мегоми), а тому керуються генераторами напруги.
Генератори струму – це джерела постійного або змінного струму, які в ідеальному випадку мають нескінченно великий внутрішній опір та забезпечують постійний струм в навантажені при зміни опору навантаження. В реальних схемах генератором струму з невеликими похибками можна вважати джерело за умови Ri>>Rн. Струм подільника напруги (рис.1.11) визначається:
Iн = E / ( R1 + R2 ).
За
умови
>>
струм
допустимо визначати співвідношенням
E/R1,а
значить він залишається майже постійним
при зміні опору навантаження від нуля
до величини, за якої можна вважати, що
R1>>R2.
Зазвичай при аналізі електронних схем
такий
режим зберігається,
коли
=0.1
.
Тобто, коли опори різняться на порядок.
Це відноситься і до визначення
співвідношення опорів в генераторах
напруги.
В електронних схемах на біполярних транзисторах вхідний опір каскадів незначний (оми – кілооми), а тому керування каскадами відбувається генераторами струму.
Звертаю увагу на наступне. Електронні каскади зазвичай включаються послідовно, тобто до попереднього підсилювача з вихідним опором Rвих підключається наступний з вхідним опором Rвх. Для того, щоб наступний каскад не порушив режим роботи попереднього, необхідно дотримуватись співвідношення Rвх>10 Rвих. Наприклад, якщо вихідна напруга сформована за допомогою резисторів R1 та R3 (рис.1.12), вона буде становити приблизно 12В і майже не зміниться при підключенні паралельно резистора R4(100 кОм) ) - режим не буде порушено. Але при підключенні резистора R2 напруга впаде десь до 6 В, що недопустимо (треба враховувати). Загальні вимоги: вихідний опір якомога менший, а вхідний – якомога більший. Таким вимогам відповідають операційні підсилювачі.
При
побудові підсилювачів потужності
максимальний результат досягається за
умови
.
