Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы_электроники_нов_4.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
22.25 Mб
Скачать

4.2 Фізичні процеси в бт

Д ля розуміння принципу дії БТ як керуючого елемента необхідно скористатися аналізом процесів у р-n переході. Розглянемо фізичні процеси, які пробігають в БТ типу n-p-n в активному режимі при його вмиканні за схемою із СБ (рис. 4.3). Емітерний перехід зміщений в прямому напрямі, а колекторний – у зворотному. Внаслідок процесу інжекції з емітера в базу поступає великий потік електронів.

Концентрація домішок у базі значно менша, ніж в емітері (емітерний перехід - не­симетричний), а тому потоком основних носіїв заряду з бази в емітер можна знехтувати. У базі біля емітерного переходу накопичується велика кількість носіїв заряду (у даному випадку - електронів), біля колекторного переходу їх майже немає. Так формується великий градієнт концентрації неосновних носіїв у базовій ділянці. Внаслідок теплового руху в базі створюється дифузійний потік неосновних носіїв від емітерного переходу, де їх надлишок, до колекторного переходу і далі в колектор. Електричне поле об'ємного заряду колекторного переходу сприяє переміщенню (екстракції) електронів через цей перехід і вони попадають у прискорювальне поле зовнішнього джерела живлення.

Майже всі електрони, що інжектували в базу, досягають колектора. Це стає можливим тільки за умови досить малої товщини бази та невеликої концентрації дірок в ній. Лише незначна частина електронів рекомбінує в базі з дірками, що викликає струм бази ІВ. Цей струм є небажаним і навіть шкідливим.

Таким чином, в електричному колі колектора формується струм колектора IС, значення якого пропорційне емітерному струму ІE:

ІС`=IЕ

Коефіцієнт пропорційності називається коефіцієнтом передачі струму емітера. Якщо база досить тонка, втрата електронів внаслідок рекомбінації їх в базі мала, коефіцієнт передачі струму може досягати значення 0,99 і більше.

Згідно з першим законом Кірхгофа між струмами електродів БТ завжди справедливе співвідношення:

ІЕВС.

Отже, в електронних схемах з БТ вхідний інформаційний сигнал, будучи прямою напругою емітерного переходу, керує струмами емітера і колектора , а відтак - опором колекторного перехо- ду rС.

В електричному колі колектора проходить також власний зворотний струм колекторного переходу (некерований зворотний струм або початковий струм колектора), який має невелике значення (одиниці мікроампер). Його позначають через ІСВ0. Як і в НД зворотний струм колекторного переходу має три складові: струм екстракції (насичення) ІС0, термострум переходу ІСТ і струм поверхневої провідності

ІСП: ІСВ00 + ІТ + ІП.

Повний струм колектора

І`С=ІЕ + ІСВ0.

Корисною складовою є лише керована складова ІС`=ІВ. Отже, колекторний перехід являє собою зміщений у зворотному напрямі ЕДП, струм якого керується потоком електронів, інжектованих через емітерний перехід. Звідси випливає головна властивість БТ як керуючого (активного) елемента: залежність вихідного (колекторного) струму від вхідної змінної величини (струму емітера або напруги на емітерному переході). Струм колектора зі зміною струму емітера змінюється з дуже малою інерцією. Це дозволяє використовувати БТ не тільки на низьких, але й на високих частотах.

Розглянемо особливості керування вихідним струмом при вмиканні БТ за схемою із СЕ. Вхідний сигнал керує відкритим емітерним переходом, як і в схемі СБ. Амплітуда ЕІС і в даному випадку визначає рівень струму емітера і, відповідно струм бази. При збільшенні струму емітера пропорційно збільшується струм бази. В схемі СЕ вхідним електродом є база, а тому прийнято оцінювати ступінь інжекції (струм емітера) через величину струму бази ІВ. Таким чином, оцінюючи величину струму бази, оцінюють зміни струму емітера і, відповідно, зміни вихідного струму – струму колектора. В схемі СЕ струм бази керує струмом колектора. Для оцінки цієї залежності використовують коефіцієнт  - коефі- цієнт передачі струму бази. Його значення (>>1) і визначає підсилення струму в схемі із СЕ; так само, як і  він є важливим параметром транзистора. Якщо  збільшити від 0,95 до 0,99, то  збільшиться від 19 до 99, тобто в п’ять разів. Ці коефіцієнти пов`язані співвідношеннями:

Кінцевим виразом є:

І`С = ІВ + ІСЕ0.

Струм ІСЕ0 називають початковим наскрізним струмом.

Носії заряду, які інжектували в базу, рухаються до колектора внаслідок дифузії. Це відбувається за умови, якщо концентрація домішок в базі, емітері та колекторі впродовж цих ділянок є сталою величиною, що характерно для сплавних транзисторів (бездрейфових).

Сучасні транзистори виготовляють із змінною концентрацією домішок у базі. У зв’язку з тим, що концентрація домішок бази біля емітера більша, ніж біля колектора, рух носіїв через базу відбувається як внаслідок дифузії, так і внаслідок дрейфу. Тому транзистори із змінною концентрацією домішок в базі називають дрейфовими. У таких транзисторах спільна дія сил дифузії та дрейфу суттєво скорочує тривалість переміщення носіїв через базу, завдяки чому зменшується рекомбінація (тобто струм бази), підвищуються частотні параметри і швидкодія БТ.