- •Частина і. Базові визначення, параметри та характеристики електронних систем
- •Електричні інформаційні сигнали та типові системи їх обробки
- •Частина іі. Активні компоненти електронних систем
- •Електронно-дірковий перехід - базова напівпровідникова структура твердотілих компонентів
- •Напівпровідникові діоди та їх використання
- •Біполярні транзистори
- •Польові транзистори
- •Інтегральні мікросхеми
- •Оптоелектронні напівпровідникові прилади
- •Частина ііі. Функціональні пристрої електронних систем
- •Електронні підсилювачі
- •Генератори незатухаючих електричних коливань та формувачі імпульсів
- •Вторинні джерела живлення
- •Передмова
- •1.2 Компоненти електронних систем
- •1.2.1 Класифікація
- •1.2.2 Пасивні компоненти
- •1.2.3 Активні компоненти – електронні прилади
- •1.3 Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом,
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6 Типові схемні елементи електронних систем
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3 Генератори напруги та струму
- •1.6.4 Моделювання електронних пристроїв
- •1.6.5 Дослідження диференціюючих rc-схем
- •1.6.5.2 Амплітудно-частотна характеристика диференціюючих схем
- •6.6 Дослідження інтегруючих rc-схем
- •1.6.6.2 Амплітудно-частотна характеристика інтегруючих схем
- •1.7 Радіотехніка, електроніка та радіоелектроніка
- •1.8 Аналогові та цифрові системи
- •1.9 Нова філософія сучасної техніки
- •1.10 Початкові засади електроніки та схемотехніки
- •1.11 Поточний самоконтроль
- •1.11.1 Завдання для дослідження схем в ms
- •1.11.2 Контрольні запитання
- •Частина іі. Активні компоненти електронних систем Розділ 2. Електронно-дірковий перехід – базова напівпровідникова структура твердотілих компонентів
- •2.1 Класифікація речовин за провідністю
- •2.2 Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4 Визначення та класифікація електричних переходів
- •2.5 Електронно-дірковий перехід в стані рівноваги
- •2.6 Пряме та зворотне вмикання едп
- •2.7 Вольт-амперна характеристика ідеалізованого едп
- •2.8 Ємнісні властивості p-n переходу
- •2.9 Пробій p-n переходу
- •2.10 Перехід метал-напівпровідник
- •2.11 Особливості р-n переходів та їх використання для побудови компонентів електронних систем
- •2.12 Поточний самоконтроль
- •2.12.1 Тестові контрольні запитання.
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1 Визначення, структура та класифікація
- •3.2 Вольт-амперна характеристика нд
- •3.3 Параметри нд
- •3.4 Електрична модель та частотні властивості нд
- •3.5 Основні види пробою нд
- •3.6 Основні типи діодів та електронні пристрої на їх основі
- •3.6.1 Випрямні діоди та випрямлячі
- •3.6.2 Високочастотні діоди
- •3.6.3 Імпульсні діоди та ключі
- •3.6.4 Напівпровідникові стабілітрони
- •3.6.5 Обмежувачі амплітуди
- •3.6.6 Варикапи та пристрої електронного регулювання частоти
- •3.8 Діоди Шотткі
- •3.8 Поточний самоконтроль
- •3.8.1 Завдання для моделювання та дослідження схем в ms
- •3.8.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1 Структури, режими та схеми вмикання
- •4.2 Фізичні процеси в бт
- •4.3 Статичні характеристики бт
- •4.3.1 Статичні характеристики бт із се
- •4.3.2 Статичні характеристики бт із сб
- •4.4 Температурний дрейф характеристик бт
- •4.5 Підсилення потужності еіс за допомогою бт
- •4.6 Графоаналітичний метод аналізу та розрахунку
- •4.7 Динамічні властивості бт
- •4.8 Ключовий режим бт
- •4.9 Порівняльний аналіз трьох схем вмикання бт
- •4.10 Власні шуми та шумові параметри транзисторів
- •4.11 Температурний режим та пробій бт
- •4.12 Основні типи бт
- •4.13 Поточний самоконтроль
- •4.13.1 Завдання для моделювання та дослідження схем
- •4.13.2 Контрольні запитання
- •Розділ 5. Польові транзистори
- •5.1 Типи польових транзисторів
- •5.2 Польовий транзистор з керувальним p-n‑переходом
- •5.3 Підсилювач з автоматичним зміщенням на пт
- •5.4 Польові транзистори з ізольованими затворами
- •5.5 Ключовий режим мдн-транзисторів
- •5.6 Температурні залежності та шуми пт
- •5.7 Класифікація та особливості використання пт
- •5.8 Порівняння польових та біполярних транзисторів
- •5.9 Поточний самоконтроль
- •5.9.2 Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1 Особливості імс як активних компонентів
- •6.2 Класифікація інтегральних мікросхем
- •6.3 Аналогові інтегральні мікросхеми
- •6.3.1 Основні типи аіс
- •6.3.2 Схеми стабілізації режиму а іс
- •6.3.3 Схеми зсуву рівнів напруг
- •6.4 Однокаскадні багатоцільові підсилювачі
- •6.5 Диференціальні підсилювачі
- •6.6 Операційні підсилювачі
- •6.6.1 Особливості оп
- •6.6.2 Інвертувальна схема вмикання оп
- •6.6.3 Неінвертувальна схема вмикання оп
- •6.6.4 Імпульсний режим оп
- •6.7 Поточний самоконтроль
- •6.7.1 Завдання для моделювання та дослідження схем в ms
- •6.7.2 Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1 Особливості оптоелектроніки
- •7.2 Джерела оптичного випромінювання
- •7.2.1 Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3 Випромінювальні діоди
- •7.3 Фотоелектричні напівпровідникові
- •7.3.1 Внутрішній фотоефект
- •7.3.2 Фоторезистори
- •7.3.3 Фотодіоди
- •7.3.4 Фототранзистори
- •7.4 Оптрони та оптоелектронні імс
- •7.5 Поточний самоконтроль
- •7.5.1 Завдання для моделювання та дослідження схем в ms
- •7.5.2 Контрольні запитання
- •Частина ііі. Функціональні пристрої електронних систем Розділ 8. Електронні підсилювачі
- •8.1 Визначення, структурні схеми
- •8.2 Основні характеристики та параметри еп
- •8.3 Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1 Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.2.2 Амплітудно-частотна та перехідна характеристики
- •8.3.3 Корекція лінійних та нелінійних спотворень
- •8.4 Зворотний зв`язок та його використання
- •8.4.1 Визначення та класифікація
- •8.4.2 Вплив зворотного зв`язку на основні параметри еп
- •8.4.3 Паразитні зворотні звязки в підсилювачах
- •8.5 Підсилювачі постійного струму
- •8.5.1 Визначення та класифікація
- •8.5.2 Підсилювачі постійного струму з безпосереднім зв`язком
- •8.5.3 Підсилювачі постійного струму
- •8.6 Вибірні (селективні) підсилювачі
- •8.6.1 Визначення та класифікація
- •8.6.2 Резонансні підсилювачі
- •8.6.3 Підсилювачі з частотно–залежним зворотним зв'язком
- •8.7 Підсилювачі потужності
- •8.7.1 Особливості побудови та класифікація
- •8.7.2 Безтрансформаторні підсилювачі потужності
- •8.8 Завдання для самоконтролю
- •8.8.1 Завдання для моделювання та дослідження схем в ms
- •8 .8.2 Контрольні запитання
- •Розділ 9. Генератори незатухачих електичних коливань та формувачі імпульсів
- •9.1 Визначення, умови самозбудження
- •9.2 Генератори гармонічних коливань
- •9.2.2 Низькочастотні rс –генератори
- •9.2.3 Стабілізація частоти коливань в автогенераторах
- •9.3 Автоколивальні мультивібратори
- •9.4 Загальмовані мультивібратори
- •9.5 Формувачі лінійно-змінної напруги
- •9.6 Завдання для самоконтролю
- •9.6.1 Завдання для моделювання та дослідження схем в ms
- •9.6.2 Контрольні запитання
- •Розділ 10. Вторинні джерела живлення електронних систем
- •10.1 Особливості енергетичної (силової) електроніки
- •10.2 Основні типи випрямлячів
- •10.3 Згладжувальні фільтри
- •10.3.1 Пасивні фільтри
- •10.3.2 Активні фільтри
- •10.4 Стабілізатори напруги
- •10.4.1 Параметричні стабілізатори напруги
- •10.4.2 Компенсаційні стабілізатори напруги
- •10.5 Завдання для самоконтролю
- •10.5.1 Завдання для моделювання та дослідження схем в ms
- •10.5.2 Контрольні запинтання
- •Список рекомендованої літератури
3.6.6 Варикапи та пристрої електронного регулювання частоти
Варикапи – це НД, ємність яких керується зворотною напругою. Вони використоруються як елементи з електрично керованою ємністю, тобто як електричний конденсатор, керований напругою.
Варикапи використовують у пристроях керування частотою коливального контуру, в параметричних схемах підсилення, ділення і множення частоти, в схемах частотної модуляції тощо. Перевагу мають варикапи на основі бар’єрної ємності p‑n‑переходу. Вихідним матеріалом для варикапів є кремній та арсенід галію. Такі діоди характеризуються залежністю ємності p-n‑переходу від зворотної напруги – вольт-фарадною характеристикою C = f(UR) (рис. 3.11).
Схему
вмикання варикапа показано на рис. 3.12.
Керувальна напруга на варикап подається
через високоомний резистор R.
Це виключає шунтування ємності варикапа
малим внутрішнім опором джерела
керувальної напруги. Змінюючи значення
цієї напруги Uк,
змінюють зворотну напругу на варикапі
і відповідно його ємність. Паралельно
варикапу вмикається коливальний
LC‑контур,
настроювання якого регулюють за допомогою
варикапа. Виокремлюючий конденсатор
Cв
вмикають для запобігання шунтуванню
варикапа малим опором індуктивності
за постійної напруги. Таку схему широко
використовують у різних радіоелектронних
пристроях. Наприклад, у радіоприймачах,
налаштованих на приймання сигналів
радіостанції, що генерує радіосигнали
із частотою f1,
через вплив дестабілізуючих факторів
може змінитися резонансна частота
вхідн
ого
коливального контуру f2.
Для забезпечення оптимального приймання
сигналів ця частота має збігатися із
частотою радіопередавача (f1 = f2).
Відхилення частоти спричиняє зменшення
інформаційного сигналу, що фіксується
спеціальною схемою, яка формує «сигнал
помилки». Цей сигнал використовується
як керувальна напруга Uк.
Таким чином, за допомогою варикапа
автоматично забезпечується рівність
частот радіопередавача та радіоприймача
(f1 = f2),
а отже, і стале приймання сигналів.
Як елемент радіоелектронного пристрою варикап визначається такими параметрами: номінальною ємністю Ctot – ємністю між виводами при номінальній напрузі зміщення (зазвичай 4 В), добротністю температурним коефіцієнтом ємності, граничною частотою, коефіцієнтом перекриття за ємністю Kc.
Коефіцієнт перекриття за ємністю – це відношення загальної ємності варикапа за двома заданими значеннями зворотної напруги.
Параметрами експлуатаційних режимів є: Pc max – максимальна допустима потужність, тобто максимальне значення потужності, що розсіюється на варикапі, та за якого забезпечується задана надійність при довготривалій роботі; UR max – максимально допустима напруга або максимальне миттєве значення змінної напруги на варикапі.
Завдяки можливості змінювати ємність через напругу варикапи використовують для автоматичного або ручного настроювання високочастотних коливальних контурів та керування частотою генераторів гармонічних коливань.
3.8 Діоди Шотткі
Діод Шотткі – це напівпровідниковий діод, випрямні властивості якого ґрунтуються на використанні випрямного електричного переходу між металом та збідненим шаром напівпровідника.
Як відомо ( див. розд. 2.9.), за умови відповідного співвідношення робіт виходу металу та напівпровідника можна на контакті метал – напівпровідник сформувати збіднений шар. Наявність такого шару забезпечує несиметрію ВАХ, а отже, і широке застосування діодів Шотткі як нелінійного двополюсника. Варто звернути увагу на особливості таких діодів. У НД на базі ЕДП основним фізичним процесом, який обмежує діапазон робочих частот, є процес накопичення та розосередження неосновних носіїв заряду в базі. Випрямна дія діодів Шотткі ґрунтується на перенесенні заряду лише основними носіями через випрямний контакт металу з напівпровідником, тобто в них виключається інжекція неосновних носіїв. Так, на основі випрямного переходу Шотткі стало можливим створення випрямних, імпульсних та надвисокочастотних НД, які відрізняються від діодів з p-n‑переходом кращими частотними властивостями. Бар’єр Шотткі широко використовують для виготовлення як дискретних, так і інтегральних схем, зокрема, в ІМС транзисторно-транзисторної логіки з бар’єром Шотткі, що дозволило суттєво підвищити швидкодію.
Силові (потужні) діоди Шотткі для силової електроніки виготовляють на основі кремнію n-типу. Вони мають робочі струми до декількох сот амперів, винятково високу швидкодію (порівняно з діодами на основі p‑n‑переходу), але низькі робочі напруги. У діодах з бар’єром Шотткі при UF = 0,4...0,6 В прямий струм становить одиниці амперів, а гранична частота – декілька сотень кілогерців. Діоди Шотткі з малим спадом напруги у разі прямого вмикання та малою тривалістю відновлення зворотного опору мають значні переваги перед кремнієвими та германієвими діодами.
Слід зазначити ще одну з особливостей діода Шотткі: пряма гілка ВАХ реальних діодів повністю відповідає виразу (3.1), тобто в діоді Шотткі ln IF = f(UF). Ураховуючи це, діоди Шотткі можна використовувати як логарифмічні елементи. Як недоліки діодів Шотткі треба виокремити значно більші (на 3...4 порядки) зворотні струми порівняно з діодами на основі p-n‑переходів і нижчі значення напруги пробою.
Промисловість випускає арсенід-галієві імпульсні діоди Шотткі, які використовуються в імпульсних схемах піко- та наносекундного діапазонів. Вони мають значно менші площі випрямних переходів, ніж у випрямних діодах Шотткі. Тому загальна ємність цих переходів не перевищує 1 пФ навіть при нульовій постійній напрузі зміщення. Арсенід-галієві та імпульсні діоди за частотними властивостями можна вважати надвисокочастотними діодами.
