- •Частина і. Базові визначення, параметри та характеристики електронних систем
- •Електричні інформаційні сигнали та типові системи їх обробки
- •Частина іі. Активні компоненти електронних систем
- •Електронно-дірковий перехід - базова напівпровідникова структура твердотілих компонентів
- •Напівпровідникові діоди та їх використання
- •Біполярні транзистори
- •Польові транзистори
- •Інтегральні мікросхеми
- •Оптоелектронні напівпровідникові прилади
- •Частина ііі. Функціональні пристрої електронних систем
- •Електронні підсилювачі
- •Генератори незатухаючих електричних коливань та формувачі імпульсів
- •Вторинні джерела живлення
- •Передмова
- •1.2 Компоненти електронних систем
- •1.2.1 Класифікація
- •1.2.2 Пасивні компоненти
- •1.2.3 Активні компоненти – електронні прилади
- •1.3 Типові процеси обробки еіс
- •1.4 Аналіз електронних пристроїв за постійним струмом,
- •1.5 Відносні та логарифмічні коефіцієнти підсилення
- •1.6 Типові схемні елементи електронних систем
- •1.6.1 Класифікація
- •1.6.2 Подільники напруги
- •1.6.3 Генератори напруги та струму
- •1.6.4 Моделювання електронних пристроїв
- •1.6.5 Дослідження диференціюючих rc-схем
- •1.6.5.2 Амплітудно-частотна характеристика диференціюючих схем
- •6.6 Дослідження інтегруючих rc-схем
- •1.6.6.2 Амплітудно-частотна характеристика інтегруючих схем
- •1.7 Радіотехніка, електроніка та радіоелектроніка
- •1.8 Аналогові та цифрові системи
- •1.9 Нова філософія сучасної техніки
- •1.10 Початкові засади електроніки та схемотехніки
- •1.11 Поточний самоконтроль
- •1.11.1 Завдання для дослідження схем в ms
- •1.11.2 Контрольні запитання
- •Частина іі. Активні компоненти електронних систем Розділ 2. Електронно-дірковий перехід – базова напівпровідникова структура твердотілих компонентів
- •2.1 Класифікація речовин за провідністю
- •2.2 Дрейфовий та дифузійний струми власних напівпровідників
- •2.3 Домішкові напівпровідники
- •2.4 Визначення та класифікація електричних переходів
- •2.5 Електронно-дірковий перехід в стані рівноваги
- •2.6 Пряме та зворотне вмикання едп
- •2.7 Вольт-амперна характеристика ідеалізованого едп
- •2.8 Ємнісні властивості p-n переходу
- •2.9 Пробій p-n переходу
- •2.10 Перехід метал-напівпровідник
- •2.11 Особливості р-n переходів та їх використання для побудови компонентів електронних систем
- •2.12 Поточний самоконтроль
- •2.12.1 Тестові контрольні запитання.
- •Розділ 3. Напівпровідникові діоди та їх використання
- •3.1 Визначення, структура та класифікація
- •3.2 Вольт-амперна характеристика нд
- •3.3 Параметри нд
- •3.4 Електрична модель та частотні властивості нд
- •3.5 Основні види пробою нд
- •3.6 Основні типи діодів та електронні пристрої на їх основі
- •3.6.1 Випрямні діоди та випрямлячі
- •3.6.2 Високочастотні діоди
- •3.6.3 Імпульсні діоди та ключі
- •3.6.4 Напівпровідникові стабілітрони
- •3.6.5 Обмежувачі амплітуди
- •3.6.6 Варикапи та пристрої електронного регулювання частоти
- •3.8 Діоди Шотткі
- •3.8 Поточний самоконтроль
- •3.8.1 Завдання для моделювання та дослідження схем в ms
- •3.8.2 Контрольні запитання
- •Розділ 4. Біполярні транзистори
- •4.1 Структури, режими та схеми вмикання
- •4.2 Фізичні процеси в бт
- •4.3 Статичні характеристики бт
- •4.3.1 Статичні характеристики бт із се
- •4.3.2 Статичні характеристики бт із сб
- •4.4 Температурний дрейф характеристик бт
- •4.5 Підсилення потужності еіс за допомогою бт
- •4.6 Графоаналітичний метод аналізу та розрахунку
- •4.7 Динамічні властивості бт
- •4.8 Ключовий режим бт
- •4.9 Порівняльний аналіз трьох схем вмикання бт
- •4.10 Власні шуми та шумові параметри транзисторів
- •4.11 Температурний режим та пробій бт
- •4.12 Основні типи бт
- •4.13 Поточний самоконтроль
- •4.13.1 Завдання для моделювання та дослідження схем
- •4.13.2 Контрольні запитання
- •Розділ 5. Польові транзистори
- •5.1 Типи польових транзисторів
- •5.2 Польовий транзистор з керувальним p-n‑переходом
- •5.3 Підсилювач з автоматичним зміщенням на пт
- •5.4 Польові транзистори з ізольованими затворами
- •5.5 Ключовий режим мдн-транзисторів
- •5.6 Температурні залежності та шуми пт
- •5.7 Класифікація та особливості використання пт
- •5.8 Порівняння польових та біполярних транзисторів
- •5.9 Поточний самоконтроль
- •5.9.2 Контрольні запитання
- •Розділ 6. Інтегральні мікросхеми
- •6.1 Особливості імс як активних компонентів
- •6.2 Класифікація інтегральних мікросхем
- •6.3 Аналогові інтегральні мікросхеми
- •6.3.1 Основні типи аіс
- •6.3.2 Схеми стабілізації режиму а іс
- •6.3.3 Схеми зсуву рівнів напруг
- •6.4 Однокаскадні багатоцільові підсилювачі
- •6.5 Диференціальні підсилювачі
- •6.6 Операційні підсилювачі
- •6.6.1 Особливості оп
- •6.6.2 Інвертувальна схема вмикання оп
- •6.6.3 Неінвертувальна схема вмикання оп
- •6.6.4 Імпульсний режим оп
- •6.7 Поточний самоконтроль
- •6.7.1 Завдання для моделювання та дослідження схем в ms
- •6.7.2 Контрольні запитання
- •Розділ 7. Оптоелектронні напівпровідникові прилади
- •7.1 Особливості оптоелектроніки
- •7.2 Джерела оптичного випромінювання
- •7.2.1 Люмінесценція
- •7.2.2. Електролюмінесцентні індикатори
- •7.2.3 Випромінювальні діоди
- •7.3 Фотоелектричні напівпровідникові
- •7.3.1 Внутрішній фотоефект
- •7.3.2 Фоторезистори
- •7.3.3 Фотодіоди
- •7.3.4 Фототранзистори
- •7.4 Оптрони та оптоелектронні імс
- •7.5 Поточний самоконтроль
- •7.5.1 Завдання для моделювання та дослідження схем в ms
- •7.5.2 Контрольні запитання
- •Частина ііі. Функціональні пристрої електронних систем Розділ 8. Електронні підсилювачі
- •8.1 Визначення, структурні схеми
- •8.2 Основні характеристики та параметри еп
- •8.3 Підсилювачі з резистивно-ємнісним зв`язком
- •8.3.1 Особливості підсилювачів з резистивно-ємнісним зв`язком
- •8.2.2 Амплітудно-частотна та перехідна характеристики
- •8.3.3 Корекція лінійних та нелінійних спотворень
- •8.4 Зворотний зв`язок та його використання
- •8.4.1 Визначення та класифікація
- •8.4.2 Вплив зворотного зв`язку на основні параметри еп
- •8.4.3 Паразитні зворотні звязки в підсилювачах
- •8.5 Підсилювачі постійного струму
- •8.5.1 Визначення та класифікація
- •8.5.2 Підсилювачі постійного струму з безпосереднім зв`язком
- •8.5.3 Підсилювачі постійного струму
- •8.6 Вибірні (селективні) підсилювачі
- •8.6.1 Визначення та класифікація
- •8.6.2 Резонансні підсилювачі
- •8.6.3 Підсилювачі з частотно–залежним зворотним зв'язком
- •8.7 Підсилювачі потужності
- •8.7.1 Особливості побудови та класифікація
- •8.7.2 Безтрансформаторні підсилювачі потужності
- •8.8 Завдання для самоконтролю
- •8.8.1 Завдання для моделювання та дослідження схем в ms
- •8 .8.2 Контрольні запитання
- •Розділ 9. Генератори незатухачих електичних коливань та формувачі імпульсів
- •9.1 Визначення, умови самозбудження
- •9.2 Генератори гармонічних коливань
- •9.2.2 Низькочастотні rс –генератори
- •9.2.3 Стабілізація частоти коливань в автогенераторах
- •9.3 Автоколивальні мультивібратори
- •9.4 Загальмовані мультивібратори
- •9.5 Формувачі лінійно-змінної напруги
- •9.6 Завдання для самоконтролю
- •9.6.1 Завдання для моделювання та дослідження схем в ms
- •9.6.2 Контрольні запитання
- •Розділ 10. Вторинні джерела живлення електронних систем
- •10.1 Особливості енергетичної (силової) електроніки
- •10.2 Основні типи випрямлячів
- •10.3 Згладжувальні фільтри
- •10.3.1 Пасивні фільтри
- •10.3.2 Активні фільтри
- •10.4 Стабілізатори напруги
- •10.4.1 Параметричні стабілізатори напруги
- •10.4.2 Компенсаційні стабілізатори напруги
- •10.5 Завдання для самоконтролю
- •10.5.1 Завдання для моделювання та дослідження схем в ms
- •10.5.2 Контрольні запинтання
- •Список рекомендованої літератури
3.4 Електрична модель та частотні властивості нд
Співвідношення ВАХ виражає зв’язок між струмом і напругою у статичному режимі ( за постійним струмом). Їх можна використовувати для аналізу і розрахунку електричних схем НД, якщо діє змінна напруга невеликої частоти. Проте, якщо частота напруги на діоді висока, потрібно враховувати тривалість процесів накопичення і роззосередження нерівноважного заряду в базі діода і нескомпенсованого об’ємного заряду в його ЕДП. Режим, в якому період зміни напруги стає сумірним з тривалістю цих процесів, називаються динамічним.
Зі збільшенням або зменшенням прикладеної напруги в діоді накопичується або роззосереджується заряд, тобто діод має ємнісні властивості. Ці властивості здебільшого визначаються ємнісними властивостями електричного переходу (2.8.).
У напівпровідникових діодах з p-n‑переходами розрізняють дві складові ємності переходу діода Сj : бар’єрну Сб і дифузійну Сдф. При цьому Сj = Сб + Сдф .
Бар’єрна ємність відображає процеси зменшення – збільшення нескомпенсованого заряду безпосередньо в р-п‑переході, дифузійна – характеризує накопичення нерівноважного заряду в базі. Навіть, якщо прямий струм невеликий, Сдф може досягати значень десятки тисяч пікофарад, що значно перевищує значення Сб (десятки – coтнi пікофарад). Тому у разі прямого зміщення необхідно враховувати лише Сдф, а у разі зворотного – Сдф = 0.
Наявність ємнісних властивостей обумовлює інерційність діода. На дуже високих частотах амплітуди прямого і зворотного струмів робочих сигналів стають сумірними i діод втрачає властивість односторонньої провідності. Якщо НД використовують у радіоелектронних пристроях, в яких важливою є смуга частот (наприклад, у радіоприймачах), то ємнісні властивості визначають граничну частоту – верхнє значення частоти інформаційного сигналу, за якої забезпечуються задані струми або напруги. Цей параметр є важливим для випрямних та високочастотних діодів.
Розглянуті процеси впливають на тривалість перемикання у пристроях імпульсної техніки, в яких імпульсні діоди використовуються як ключі. Такі пристрої досліджуються в часовій області та оцінюються за допомогою перехідних характеристик ( 1.4.).
Перехідними процесами називають процеси встановлення напруг (або струмів) напівпровідникових приладів під впливом імпульсу струму (або напруги). Тривалість перехідних процесів визначає швидкодію імпульсних і цифрових пристроїв.
3.5 Основні види пробою нд
Якщо зворотна напруга діода досягає певного критичного piвня (UBR), струм діода починає різко збільшуватися. Це явище називаютъ пробоєм діода. Воно викликане пробоєм електричного переходу. Напруга, за якої виникає пробій, залежить від типу діода i може мати значення від одиниць до сотень вольтів.
Розрізняють два основні види пробоїв ЕДП: електричний i тепловий. У випадку електричного пpoбoю число ноciїв заряду в переході збільшується під дією сильного електричного поля та ударної ioнiзації атомів кристалічних ґрат, а у разі теплового пробою – під дією термічної ioнiзaції атомів. Пробій НД повністю визначається пробоєм ЕДП, фізичні процеси, які при цьому протікають описані в розділі 2.9.
Електричний пробій не призводить до руйнування структури р‑п‑переходу. Потужність, що виділяється в діоді, підтримується на допустимому piвнi. Діод зберігає працездатність i після пробою. Більше того, для деяких типів діодів (стабілітронів) пробій є основним робочим режимом.
Тепловий пробій діода виникає внаслідок перегріву ЕДП струмом, якщо не забезпечується його стійкий тепловий режим. При цьому виникає надмірний пepeгpiв переходу, ввввідбуваються незворотні зміни його структури, діод виходить з ладу.
Коли у p-n‑перехід вмикають зворотну напругу, через нього проходить зворотний струм IR, і в діоді виділяється зворотна потужність розсіювання PR = UR·IR. Основна частина теплової енергії виділяється біля зони об’ємного заряду p-n‑переходу. Під час проектування та експлуатації напівпровідникових приладів значну увагу приділяють їх тепловому режиму. Аналогічно тому, як температура тіла є найважливішим критерієм стану організму людини, температура структури електричного переходу визначає надійність напівпровідникового приладу: чим вища температура структури, чим відчутніші коливання температури, тим нижча надійність роботи напівпровідникового приладу.
Спроможність напівпровідникового приладу короткочасно або тривало витримувати дію підвищеної температури, а також різкі зміни температури характеризують його теплостійкість. Джерелом тепла в приладах є активний елемент – елемент конструкції, крізь який протікає струм і в якому здебільшого розсіюється електрична енергія. Ця енергія перетворюється в теплову і визначає тепловий режим приладу. Між активним елементом напівпровідникового приладу та рештою об’єму електронного пристрою (навколишнім середовищем) виникає тепловий потік і розвиваються процеси встановлення теплової рівноваги. Це і є теплообмін.
При вирішенні питання доцільності використання НД в радіоелектроннихє пристроях, необхідно співставляти допустимі експлуатаційні параметри з передбаченим тепловим режимом роботи приладу.
