Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы_электроники_нов_4.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
22.25 Mб
Скачать

2.3 Домішкові напівпровідники

Власні напівпровідники використовуються обмежено. В електроніці для виготовлення напівпровідникових активних приладів використовують ефекти, які виникають, коли в напівпровідник вводиться домішка, тобто відбувається його легування. Такий напівпровідник називають домішковим. Це обумовлено тим, що у вказаних структурах можна забезпечувати нociї заря­ду двох видів (електрони i дірки), точно керувати їxніми концентраціями і у такий спосіб цілеспрямовано змінювати властивості напівпровідника.

При розриві ковалентного зв’язку одночасно виникають вільний електрон та дірка. Якби можна було одержати вільний електрон, не розриваючи ковалентного зв’язку, то дірки не виникали б і можна було б утворити концентрацію вільних eлeктpoнiв, яка перебільшувала б концентрацію дірок. Так само, якщо можна було б одержати розірваний ковалентний зв’язок, не вивільняючи електрон, то вдалось би зробити концентрацію дірок більшою, ніж кон­центрацію вільних електронів. Ці можливості реалізуються завдяки легуванню основного напівпровідникового матеріалу домішуванням дуже малої кількості побічних елементів, які називають домішками.

Включення домішок у напівпровідники в кількості 10-7...10-9% дозволяють суттєво збільшити їхню провідність.

Кожний атом граток германію чи кремнію має чотири валентні електрони, i всі вони беруть участь у створенні ковалентних зв'язків. Якщо у кристалі напівпровідника замінити один з його атомів атомом домішки з п'ятьма валентними електронами, то атом домішки внесе на один електрон більше, ніж необхідно для заповнення ковалентних зв’язків. Цей зайвий електрон може стати рухомим і вільним без розриву ковалентних зв’язків i, отже, без утворення дірки.

При кімнатній температурі, а тим більше, з підвищенням температур усі атоми домішки виявляються іонізованими. Необхідно зауважити, що мінімальну температуру іонізації (коли всі атоми домішок іонізовані) враховують при визначенні робочого температурного діапазону напівпровідникових приладів.

Оскільки атоми домішок такого типу є джерелом вільних електронів, вони називаються донорами. Домішки, які здатні віддавати електрони у зону провідності, називаються донорними домішками. Донорні домішки для германiю та кремнію використовують фосфор, миш’як та сурму.

В таких напівпровідниках дірки, які виникають внаслідок термогенерації, рекомбінують з електронами зони провідності інтенсивніше, ніж у власному напівпровіднику, оскільки концентрація електронів nn у цьому разі значно більша від ni. Тому за умови збільшення концентрації електронів провідності концентрація дірок зменшується. У такому напівпровіднику дірки називають неосновними носіями заряду, а електрони, що складають переважну кількість рухомих носіїв, - основними носіями заряду.

Напівпровідник із донорною домішкою називають напівпровідником n-типу (від лат. negative - від’ємний), або напівпровідником з електронною електропровідністю.

При легуванні напівпровідника тривалентною домішкою один із зв’язків залишається незаповненим, через що у кристалі утворюються дірки, які дозволяють переносити заряд електронами у валентній зоні. Суттєвим є те, що для переходу електрона від сусідніх зарядів на місце створеної дірки потрібна незначна енергія, набагато менша від ширини забороненої зони власного напівпровідника.

Оскільки домішковий атом цього типу захоплює електрон для заповнення ковалентних зв'язків, він називається акцептором (одержувачем). Домішки, які забезпечують виникнення дірок у валентній зоні, називаються акцепторними домішками. Основними носіями заряду у цьому випадку є дірки, а неосновними - електрони. Оскільки основні ноciї заряджені позитивно, матеріал називається напівпровідником із дірковою електропровідністю або напівпровідником р-типу (від англ. positive – позитивний).

Донорні та акцепторні домішки значно збільшують кількість основних та водночас зменшують число неосновних носіїв заряду.