- •1. Сформулируйте понятие "Биотехнология".
- •2. Современная формулировка ответа на вопрос: "Что такое жизнь?"
- •3. Основные молекулы живого и их хар-ка.
- •4. Способы получения энергии живыми организмами.
- •5. Уровни организации жизни. Элементарная единица каждого уровня.
- •6. Формы жизни на земле. Их главные признаки. Значение вирусов и бактериофагов в биотехнологии.
- •7. Положение современной клеточной теории.
- •8. Типы клеточной организации.
- •9. Царство Прокариоты. Структурно-функциональная организация прокариотической клетки. Место прокариот в биотехнологии.
- •10. Основные компоненты прокариотической клетки.
- •11. Какие функции выполняет клеточная стенка микроорганизмов?
- •12. Охарактеризуйте поверхностные структуры микробной клетки и их роль с точки зрения биотехнологии.
- •13. Какие биополимеры образуют клеточную стенку прокариот? Каким образом взаимодействуют эти соединения?
- •14. Опишите сходства и различие состава и организации клеточной стенки грамположительных и грамотрицательных прокариот.
- •15. Какую роль играет клеточная стенка микроорганизмов в биотехнологических процессов? Является ли клеточная стенка преградой для перемещения веществ среды в клетку и наоборот?
- •16. Чем отличается строение клеточных стенок прокариот, дрожжей, микроскопических грибов и многоклеточных организмов?
- •17. Перечислите основные функции цпм. Каким образом мембраны влияют на биотехнологический процесс?
- •18. Каков хим.Состав мембран? Функциональная роль компонентов мембран.
- •19. Какие свойства проявляют биологические мембраны?
- •20. Опишите особенности строение мембран прокариотической клетки.
- •21. Мембранные образования эукариотических клеток, их функции и строение.
- •25. Расскажите о трех наиболее известных типах моделей транспорта.
- •26. Объясните механизм транспорта с химической модификацией субстрата на примере глюкозы
- •27. Охарактерезуйте системы «первичного» активного транспорта.
- •28. Как функционирует na-k атф-аза?
- •29. Что такое система «вторичного активного транспорта»?
- •30. Расскажите о транспорте основных компонентов среды – аминокислот, нуклеиновых кислот и белков, углеводов и органических веществ в клетку.
- •31. Охарактеризуйте основые механизмы регуляции биосинтеза транспортных систем – индукцию, репрессию и катаболитную репрессию и их значение в биотехнологическом процессе
- •32. Каким образом осуществляется выделение веществ из клетки и какое значение имеет этот процесс для решения биотехнологических задач?
- •33. Поверхностные структуры клеток. Фимбрии, пили.
- •34. Капсула, ее значение и свойства.
- •35. Типы слизей. Химический состав основных слизей.
- •38. Жгутики про- и эукариотических клеток.
- •39. Схема основных биохимических процессов в клетках продуцентов и способы их регуляции.
- •40. Сопряженная регуляция синтеза и транспорта триптофана.
- •41. Транспорт нуклеиновых кислот.
- •42. Регуляция транспорта лактозы. Лактозный оперон
- •43. Диауксия и катоболитная репрессия.
- •44. Кривая роста микроорганизмов и представление о популяции микроорганизмов как о едином организме функционирующем по своим законам.
- •45. Схема метаболических превращений клеток микроорганизмов
- •46. Каковы следствия возможных вариантов балансовых отношений анаболических и катаболических процессов в клетке?
- •47. В чем отличие автолитических процессов от автолиза клеток? Дайте определение автолиза. Роль автолиза в биотехнологическом процессе
- •48. Каковы причины автолиза? Назовите основные типы ( и примеры) индукторов автолиза
- •49. Как определяют интенсивность и глубину автолиза?
- •50. Где в клетке про- и эукариот локализованы собственно автолизины и ферменты автолити.Комплекста?
- •51. Каковы функции автолизинов в физ.Процессах при развитии микробных культур?
- •52. Дайте определение клеточного эндогенного и экзогенного, роль покоев.
- •53.Каковы биохимические изменения в клетках стационарной фазы роста микробной культуры?
- •54.Что такое анабиоз и какие формы покоящихся клеток образуют микроорганизмы. Применение анабиоза в биотехнологии.
- •56.Каковы механизмы развития анабиотического состояния?
- •57. Охарактеризуйте стадии эндоспрообразования.
- •58. Охарактеризуйте стадии прорастания спор.
- •59. Каковы основные приемы получения собственно покоящихся клеток и способы защиты клеточных структур от повреждений
- •60. Роль фосфотрансферазной системы в катаболической репрессии
- •61. Схема экзогенной индукции
- •62. Секреция (экспорт) белков. Схема котрансляционной секреции экзоферментов
- •63. Транспорт факторов вирулентности к мишеням.
- •64. Регуляция скорости роста микроорганизмов. Последовательность событий деления клетки
- •65. Характеристики процесса репликации днк:
- •66. Удвоение бактериальной хромосомы (нуклеотида). Амплификация генов и ее роль в биотехнологическом процессе.
- •67. Расхождение бактериальных хромосом и образование перегородки.
- •68. Схема митотического деления клетки.
- •69. Регуляция синтеза белка путем индукции (схема).
- •70. Регуляция синтеза белка путем репрессии.
- •71. Регуляция экспрессии активности гена у прокариот.
- •72. Регуляция скорости роста микроорганизмов. Значение этого параметра для биотех.
- •73. Последовательность событий в процессе деления клетки
- •74. Характеристики процесса репликации днк. Способы влияния на этот процесс.
- •75. Общая схема регуляции на стадии транскрипции
- •76. Лактозный оперон и условия его функционирования.
- •77. Репрессия синтеза ферметов, обуславливаюших синтез триптофана.
- •78. Общая схема транскрипционного цикла.
- •79. Регуляция с помощью ффГфф (строгий ответ).
- •80. Различные терминаторы и их роль в регуляции. Антитерминация транскрипции.
- •81. Главные особенности прокариотич. Регуляции белкового синтеза на уровне транскрипции.
- •82. Специфика регуляции синтеза белка у прокариот.
- •83. Регуляция на уровне трансляции.
- •84. Регуляция экспрессии генов на пострансляционном уровне.
- •85.Фосфорилирование и гликозилирование белков.
- •86.Схема типов секреции бактерий
- •87.Сходсво и различие систем 1-3 типов. См.?86
- •88.Основные принципы селекции продуцентов в биотехнологии
- •89. Типы мутаций, используемые для получения продуцентов
- •91. Понятие о продуцентах и сверхпродуцентах в биотех. Вид, штамм, клон, чист.Культура.
85.Фосфорилирование и гликозилирование белков.
Обратимое фосфорилирование боковых цепей аминокислот — широко распространённый способ регуляции активности ключевых белков клетки, в том числе ферментов и белков сигнальных путей. Считается, что фосфорилированию подвержено около трети всех белков эукариот.Под реакцией фосфорилирования белка понимают присоединение фосфатной группы через фосфоэфирную связь (О-фосфорилирование) к гидроксильной группе боковой цепи остатка серина, треонина или тирозина, донором фосфата при этом является АТФ. В подавляющем большинстве случаев фосфорилирование происходит именно по этим трём аминокислотным остаткам. Однако в природе встречается также фосфорилирование по остаткам гистидина и аргинина (N-фосфорилирование), аспартата и глутамата (A-фосфорилирование)[4]. Образующиеся при фосфорилировании эфиры фосфорной кислоты весьма стабильны, поэтому для их разрушения необходимы специальные ферменты – протеинфосфатазы. Это создаёт основания для тонкой регуляции уровня фосфорилированности белка с помощью контроля за уровнем соответствующих протеинкиназ и протеинфосфатаз.Введение в молекулу белка остатка фосфорной кислоты, как правило, меняет её свойства. Это связано с химической природой фосфатной группы, которая может формировать водородные связи и электростатические взаимодействия с компонентами белковой молекулы. В результате может изменяться пространственная структура белка и, как результат, его активность и способность связываться с другими молекулами.
Гликозилирование (англ. Glycosylation) — ферментативный процесс, в ходе которого происходит присоединение остатков сахаров к органическим молекулам. В процессе гликозилирования образуются гликозиды, или, в случае белков и липидов, гликопротеиды и гликолипиды, соответственно. Гликозилирование является одной из форм котрансляционной и посттрансляционной модификации белков. Гликозилирование имеет большое значение для структуры и функций мембранных и секретируемых белков.Преобладающая часть белков, синтезируемых в шероховатом эндоплазматическом ретикулюме, подвергается гликозилированию. Гликозилирование представляет собой ферментативный специфический процесс. В цитоплазме и ядре гликозилирование осуществляется в форме O-GlcNAc модификации. Известны пять классов гликанов: в случае N-связанных гликанов сахар присоединен к атому азота боковой цепи остатка аспарагина или аргинина; в O-связанных гликанах сахар присоединен к гидроксилам боковых цепей остатков серина, треонина, тирозина или гидроксилизина или к атомам кислорода липидов, например, церамидов; фосфогликаны содержат остаток сахара, соединенный через фосфат с серином; C-связанные гликаны представляют собой редкую форму гликозилирования, в которой сахар соединяется с атомом углерода боковой цепи триптофана.
86.Схема типов секреции бактерий
Для секреции белков бактериальные клетки используют различные системы секреции в зависимости от строения и конечной локализации белка. Поэтому является необходимым приведение небольшого обзора систем секреции всех типов. Секреция первого типа. Аппарат этой системы секреции устроен относительно просто. Он включает в себя три компонента белковой природы. Эта система является Sec-независимой и осуществляет секрецию субстратов непосредственно из цитоплазмы в одну стадию без периплазматических посредников. По этому пути секретируются токсины, протеазы, липазы, антибиотики и другие соединения. Секреция второго типа. Эта система секреции устроена уже довольно сложно. Характерной особенностью является ее разделение на две части и секреция субстратов в две стадии. Первая часть, называемая Sec-системой, экспортирует белки через цитоплазматическую мембрану, далее белки либо остаются в периплазме, либо секретируются через внешнюю мембрану посредством терминальных компонентов системы секреции По этому пути секретируются такие белки, как пектатлиазы, пектинметилэстеразы и т..дВ связи с большим количеством и разнообразием субстратов, секретируемых через этот аппарат секреции, его называют “общим секреторным путем.Секреция третьего типа. Этот тип секреции, подобно первому типу, является независимым от Sec-системы. Характерной особенностью его является доставка субстратов (факторов вирулентности) непосредственно в клетку эукариотического хозяина, также наличие большого количества секреторных шаперонов. Сам аппарат включает в себя около двадцати белковых компонентов, большая часть которых расположена во внутренней мембране, и по структуре довольно схож с системой сборки жгутика.Секреция четвертого типа. Аппарат секреции четвертого типа состоит из двух компонентов: конъюгационного канала, через который происходит транслокация субстратов, и конъюгационного пилюса, необходимого для контакта с реципиентной клеткой. Строение этой системы секреции сходно со строением аппарата конъюгации некоторых плазмид.Секреция пятого типа. Эта система секреции включает в себя группу белков, называемых автотранспортерами, к числу которых относятся: протеазы (IgA) Neiseria gonorrhoeae, цитотоксин (Vac) Helicobacter pylori. Автотранспортеры экспортируются из цитоплазмы через Sec-систему с отщеплением сигнальной аминоконцевой последовательности. Некоторые из них могут оставаться заякоренными в клеточной стенке, другие же экспортируются непосредственно во внеклеточное пространство
