
- •1. Сформулируйте понятие "Биотехнология".
- •2. Современная формулировка ответа на вопрос: "Что такое жизнь?"
- •3. Основные молекулы живого и их хар-ка.
- •4. Способы получения энергии живыми организмами.
- •5. Уровни организации жизни. Элементарная единица каждого уровня.
- •6. Формы жизни на земле. Их главные признаки. Значение вирусов и бактериофагов в биотехнологии.
- •7. Положение современной клеточной теории.
- •8. Типы клеточной организации.
- •9. Царство Прокариоты. Структурно-функциональная организация прокариотической клетки. Место прокариот в биотехнологии.
- •10. Основные компоненты прокариотической клетки.
- •11. Какие функции выполняет клеточная стенка микроорганизмов?
- •12. Охарактеризуйте поверхностные структуры микробной клетки и их роль с точки зрения биотехнологии.
- •13. Какие биополимеры образуют клеточную стенку прокариот? Каким образом взаимодействуют эти соединения?
- •14. Опишите сходства и различие состава и организации клеточной стенки грамположительных и грамотрицательных прокариот.
- •15. Какую роль играет клеточная стенка микроорганизмов в биотехнологических процессов? Является ли клеточная стенка преградой для перемещения веществ среды в клетку и наоборот?
- •16. Чем отличается строение клеточных стенок прокариот, дрожжей, микроскопических грибов и многоклеточных организмов?
- •17. Перечислите основные функции цпм. Каким образом мембраны влияют на биотехнологический процесс?
- •18. Каков хим.Состав мембран? Функциональная роль компонентов мембран.
- •19. Какие свойства проявляют биологические мембраны?
- •20. Опишите особенности строение мембран прокариотической клетки.
- •21. Мембранные образования эукариотических клеток, их функции и строение.
- •25. Расскажите о трех наиболее известных типах моделей транспорта.
- •26. Объясните механизм транспорта с химической модификацией субстрата на примере глюкозы
- •27. Охарактерезуйте системы «первичного» активного транспорта.
- •28. Как функционирует na-k атф-аза?
- •29. Что такое система «вторичного активного транспорта»?
- •30. Расскажите о транспорте основных компонентов среды – аминокислот, нуклеиновых кислот и белков, углеводов и органических веществ в клетку.
- •31. Охарактеризуйте основые механизмы регуляции биосинтеза транспортных систем – индукцию, репрессию и катаболитную репрессию и их значение в биотехнологическом процессе
- •32. Каким образом осуществляется выделение веществ из клетки и какое значение имеет этот процесс для решения биотехнологических задач?
- •33. Поверхностные структуры клеток. Фимбрии, пили.
- •34. Капсула, ее значение и свойства.
- •35. Типы слизей. Химический состав основных слизей.
- •38. Жгутики про- и эукариотических клеток.
- •39. Схема основных биохимических процессов в клетках продуцентов и способы их регуляции.
- •40. Сопряженная регуляция синтеза и транспорта триптофана.
- •41. Транспорт нуклеиновых кислот.
- •42. Регуляция транспорта лактозы. Лактозный оперон
- •43. Диауксия и катоболитная репрессия.
- •44. Кривая роста микроорганизмов и представление о популяции микроорганизмов как о едином организме функционирующем по своим законам.
- •45. Схема метаболических превращений клеток микроорганизмов
- •46. Каковы следствия возможных вариантов балансовых отношений анаболических и катаболических процессов в клетке?
- •47. В чем отличие автолитических процессов от автолиза клеток? Дайте определение автолиза. Роль автолиза в биотехнологическом процессе
- •48. Каковы причины автолиза? Назовите основные типы ( и примеры) индукторов автолиза
- •49. Как определяют интенсивность и глубину автолиза?
- •50. Где в клетке про- и эукариот локализованы собственно автолизины и ферменты автолити.Комплекста?
- •51. Каковы функции автолизинов в физ.Процессах при развитии микробных культур?
- •52. Дайте определение клеточного эндогенного и экзогенного, роль покоев.
- •53.Каковы биохимические изменения в клетках стационарной фазы роста микробной культуры?
- •54.Что такое анабиоз и какие формы покоящихся клеток образуют микроорганизмы. Применение анабиоза в биотехнологии.
- •56.Каковы механизмы развития анабиотического состояния?
- •57. Охарактеризуйте стадии эндоспрообразования.
- •58. Охарактеризуйте стадии прорастания спор.
- •59. Каковы основные приемы получения собственно покоящихся клеток и способы защиты клеточных структур от повреждений
- •60. Роль фосфотрансферазной системы в катаболической репрессии
- •61. Схема экзогенной индукции
- •62. Секреция (экспорт) белков. Схема котрансляционной секреции экзоферментов
- •63. Транспорт факторов вирулентности к мишеням.
- •64. Регуляция скорости роста микроорганизмов. Последовательность событий деления клетки
- •65. Характеристики процесса репликации днк:
- •66. Удвоение бактериальной хромосомы (нуклеотида). Амплификация генов и ее роль в биотехнологическом процессе.
- •67. Расхождение бактериальных хромосом и образование перегородки.
- •68. Схема митотического деления клетки.
- •69. Регуляция синтеза белка путем индукции (схема).
- •70. Регуляция синтеза белка путем репрессии.
- •71. Регуляция экспрессии активности гена у прокариот.
- •72. Регуляция скорости роста микроорганизмов. Значение этого параметра для биотех.
- •73. Последовательность событий в процессе деления клетки
- •74. Характеристики процесса репликации днк. Способы влияния на этот процесс.
- •75. Общая схема регуляции на стадии транскрипции
- •76. Лактозный оперон и условия его функционирования.
- •77. Репрессия синтеза ферметов, обуславливаюших синтез триптофана.
- •78. Общая схема транскрипционного цикла.
- •79. Регуляция с помощью ффГфф (строгий ответ).
- •80. Различные терминаторы и их роль в регуляции. Антитерминация транскрипции.
- •81. Главные особенности прокариотич. Регуляции белкового синтеза на уровне транскрипции.
- •82. Специфика регуляции синтеза белка у прокариот.
- •83. Регуляция на уровне трансляции.
- •84. Регуляция экспрессии генов на пострансляционном уровне.
- •85.Фосфорилирование и гликозилирование белков.
- •86.Схема типов секреции бактерий
- •87.Сходсво и различие систем 1-3 типов. См.?86
- •88.Основные принципы селекции продуцентов в биотехнологии
- •89. Типы мутаций, используемые для получения продуцентов
- •91. Понятие о продуцентах и сверхпродуцентах в биотех. Вид, штамм, клон, чист.Культура.
80. Различные терминаторы и их роль в регуляции. Антитерминация транскрипции.
Существуют белковые факторы, одни из которых препятствуют, а другие – способствуют терминации. В случае ρ-зависимой терминации регуляция синтеза белка возможна через воздействие на активность ρ-белка. Для прокариот известно два типа терминации транскрипции: ρ-зависимая и ρ-независимая. Процесс ρ-зависимой терминации показан на рис. 10. Главным фактором терминации транскрипции у бактерий является белок ρ (“ро”), или ρ-фактор, или Rho-фактор, состоящий из шести субъединиц. До последнего времени считалось, что ρ-фактор, присоединившись к 5’-концу РНК, начинает двигаться по ней с той же скоростью, с какой РНК-полимераза движется по ДНК. В районе ρ-зависимого терминатора, отличающегося большим содержанием Г-Ц-пар азотистых оснований, РНК-полимераза притормаживает, так как ей трудно разрывать по три водородные связи в парах “гуанин – цитозин”. Поэтому ρ-белок, скорость которого осталась прежней, догоняет РНК-полимеразу и взаимодействует с ней, изменяя ее конформацию. В результате РНК-полимераза отделяется от ДНК. Согласно данной модели, ρ-фактор первоначально связан только со строящейся РНК, но не с РНК-полимеразой. Лишь позднее он взаимодействует с этим ферментом. По современным представлениям, ρ-фактор сразу связывается с РНК-полимеразой на старте транскрипции, еще до возникновения какого-либо фрагмента РНК. Как только строящаяся РНК становится достаточно длинной, ρ-фактор “продевает” ее сквозь себя, при этом образуя из нее петлю, и начинает тормозить движение РНК-транскрипта с использованием энергии АТФ. Из-за образования петли нарастает пространственное напряжение, которое в районе ρ-зависимого терминатора приводит к изменению конформации ρ-фактора. Это, в свою очередь, изменяет конформацию РНК-полимеразы и инактивирует ее. В итоге элонгационный комплекс останавливается в зоне терминатора, а затем медленно распадается на составные элементы.
Антитерминация транскрипции – это подавление активности некоторых терминаторов. Например, у бактериофага λ есть специальные белки-антитерминаторы N и Q. Белок N связывается с определенной структурой на строящейся мРНК и обеспечивает присоединение к ней четырех белков : S10, NusA, NusB, NusG. Образуется РНК-белковый комплекс, взаимодействующий с РНК-полимеразой и мешающей ей завершить трансляцию на ρ-зависимых и некоторых ρ-независимых терминаторах. Белок Q подавляет активность терминатора, связываясь не с РНК, а с ДНК.
81. Главные особенности прокариотич. Регуляции белкового синтеза на уровне транскрипции.
1. Основная регуляция происходит на этапе инициации транскрипции.
2. Так как большинство генов прокариот находятся во “включенном” состоянии, регуляторные воздействия у прокариот обычно направлены на их “выключение”. Для каждого набора генов имеется свой специфический репрессор.
3. Одна регуляторная область на ДНК часто регулирует работу не одного, а нескольких генов.
4. Имеется небольшое количество возможных уровней синтеза белка (“включено”, “выключено” и ряд промежуточных уровней), “плавная” регуляция с тонкой настройкой отсутствует.