Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мікробіологія (екзамен - питання-відповіді).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
915.62 Кб
Скачать

26. Объясните механизм транспорта с химической модификацией субстрата на примере глюкозы

События, связанные с регуляцией транспортных процессов, иногда оказывают существенное влияние на процессы метаболизма в целом. Ярким примером является участие фосфотрансферазной системы в регуляции биосинтеза белков по типу катаболитной репрессии. Оказалось, что уровень сАМР у Escherichia coli облигатно зависит от функционирования фосфотрансферазной системы, причем главную роль в этой связи играет специфический для глюкозы компонент Е 111.В отсутствие глюкозы все компоненты системы, в том числе и Е I 11, находятся в фосфорилированном состоянии за счет резерва PEP. Фосфорилированный Е 111, взаимодействуя с аденилатциклазой, переводит ее в активное состояние, в результате чего внутриклеточный уровень сАМР повышается и активируется транскрипция "слабых" оперонов, в том числе систем транспорта и метаболизма других Сахаров.Напротив, в присутствии глюкозы степень фосфорилирования Е I 11 снижается в связи с переносом фосфорильного остатка на глюкозу в процессе ее транспорта. В результате уменьшается активность аденилатциклазы, снижается уровень сАМР и блокируется транскрипция ряда "сахарных" оперонов.Следует добавить, что нефосфорилированная форма Е I I I, по-видимому, может инактивировать транспортные системы других Сахаров, предотвращая поступление последних в клетку, что еще более усиливает катаболитную репрессию.

Каков же механизм катаболитной реперессии в случае, когда подавляется синтез ферментов, ответственных за катаболизм самой глюкозы, а в качестве более выгодных в энергетическом смысле субстратов выступают, например, органические кислоты или водород? Ведь тогда участие фосфотрансферазной системы невозможно. Одним из способов снижения уровня сАМР может служить активирование его выброса из клетки, например наложением на мембрану ТЭП, т.е. путем "энергизации" мембраны, степень которой, естественно, будет выше всегда, когда используется более выгодный в энергетическом отношении субстрат. Таким образом, если субстрат обеспечивает энергетические потребности клетки и создает необходимую степень "энергизации" мембраны, он может вызывать подавление использования других субстратов, от которых зависит уровень с AMP в клетке.

27. Охарактерезуйте системы «первичного» активного транспорта.

Перенос ионов через клеточную мембрану может происходить против их градиента концентрации за счет энергиaи макроэргических соединений (АТФ). Транспорт ионов через мембрану возбудимых клеток против концентрационного градиента, обусловленный функцией транспортных АТФаз называется первично активным. Первично активный транспорт характерен для переноса через мембрану возбудимых клеток ионов Na+, K+ или Ca2+. Транспортные АТФазы — это интегральный тип белков клеточной мембраны, поэтому ионы могут активно транспортироваться, например, из внеклеточной среды в цитоплазму (ионы K+) или наоборот (ионы Na+).В клетках возбудимых тканей первично активный транспорт осуществляется с помощью трех типов АТФаз: натрий-калиевой, кальциевой и протонной помпы.

Транспорт ионов Na+ и K+ через мембрану.

В мембранах всех клеток организма человека и животных локализована Na+ / K+ -АТФаза, или натрий-калиевый насос Функция этого насоса заключается в поддержании градиента концентрации ионов Na+ и K+ между цитозолем клетки и внеклеточной средой. В возбудимых клетках создание и поддержание подобного градиента является основным условием возникновения потенциала покоя на мембране клеток, а также последующей генерации и распространения потенциала действия по мембране нервного волокна и мышечной клетки.Na+ / K+ -АТФаза состоит из α-и β-белковых субъединиц. Na+ / K+-АТФаза существует в двух конформационных формах — E1 и E2. В конформации АТФ E1 участки насоса, связывающие катионы, обращены в цитоплазму испособны связываться с ионами Na+. В конформации АТФ P-E2 участки связывания катионов обращены во внеклеточную среду и преимущественно связываются с ионами калия. Места связывания локализованы в специальном углублении канала, поэтому во время транспорта ионов Na+ и K+ через мембрану клетки они окружены молекулой насоса и не могут взаимодействовать с другими ионами. За один цикл активности насоса три иона натрия выводятся из клетки, а внутрь транспортируются два иона калия.

Транспорт ионов Ca2+ через мембрану.

В мембране саркоплазматического ретикулума всех типов мышечных клеток локализована Ca2+-АТФаза. Функция этого насоса заключается в поддержании низкой концентрации ионов кальция в цитоплазме мышечных клеток за счет депонирования ионов в саркоплазматический ретикулум. Поддержание низкой концентрации ионов Ca2+ в саркоплазме является основным условием расслабления мышечных клеток . Ca++-АТФ-аза функционирует следующим образом. В присутствии АТФ после присоединения со стороны цитоплазмы иона кальция к кальций-связывающему участку Ca2+-АТФаза фермент изменяет свою конформацию, и область связывания ионов Ca2+ оказывается внутри саркоплазматического ретикулума. При этом сродство ионов к Ca2+-АТФазе уменьшается, и ионы Ca2+ высвобождаются во внутриретикулярное пространство. Под действием ионов Mg2+ саркоплазматического ретикулума фермент Ca2+-АТФаза

дефосфорилируется и кальций-связывающий участок вновь оказывается снаружи мембраны. В такой последовательности повторяется цикл работы кальциевого насоса. В саркоплазме мышечных клеток ионы кальция принимают участие в механизме мышечного сокращения либо выполняют функцию вторичного посредника.

Транспорт протонов через мембрану.

Протонная помпа (H+-АТФаза) транспортирует протоны через внутренние мембраны митохондрий. Протонная помпа в митохондриях увеличивает градиент электрохимического потенциала ионов водорода на мембране до порогового или критического уровня, который необходим для синтеза АТФ. Протонная помпа увеличивает электрическую и концентрационную составляющую электрохимического потенциала на мембране митохондрий.