Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
tsitologia_bibl.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
20.67 Mб
Скачать
  1. Как достигается баланс процессов эндоцитоза и экзоцитоза?

Баланс процессов эндоцитоза и экзоцитоза. Эндоцитоз вследствие постоянной отшнуровки пузырьков с поверхности плазмолеммы должен приводить к уменьшению ее площади при одновременном увеличении объема клетки. Так, например, в макрофагах за 1 ч за счет эндоцитоза вносится до 25% объема цитоплазмы, а за 0,5 ч общая площадь поверхности эндоцитозных пузырьков составляет 100% площади плазмолеммы. При экзоцитозе, напротив, постоянно происходит увеличение площади плазмолеммы вследствие встраивания в нее мембраны экзоцитозных пузырьков. Так, в секреторной клетке ацинуса поджелудочной железы совокупная площадь мембраны секреторных гранул в 30 раз больше, чем поверхность плазмолеммы.

Вместе с тем в действительности активные процессы эндоцитоза и экзоцитоза не приводят к существенным изменениям площади поверхности плазмолеммы, так как они уравновешиваются формированием экзоцитозных и эндоцитозных пузырьков, соответственно, компенсирующим происходящую потерю мембраны или ее увеличение за счет противоположно направленного процесса. Эти явления отражают постоянно происходящий в клетке круговорот мембран, который получил название "мембранного конвейера".

  1. Как происходит образование межклеточных контактов?

Плазмолемма многоклеточных животных организмов принимает активное участие в образовании специальных структур – межклеточных контактов, или соединений, обеспечивающих межклеточные взаимодействия. Различают несколько типов таких структур. Общим для этих клеток является то, что на их поверхности располагаются специальные углеводные части интегральных белков, гликопротеидов, которые специфически взаимодействуют и соединяются с соответствующими белками на поверхности соседних клеток.

  1. Как классифицируются межклеточные контакты?

Межклеточные соединения делятся на следующие:

1. Простые.

2. Сложные:

а) запирающие (изолирующие);

б) сцепляющие (заякоривающие);

в) коммуникационные (объединяющие).

Простое межклеточное соединение – сближение плазмолемм соседних клеток на расстояние 15-20 нм. При этом происходит взаимодействие слоев гликокаликса соседних клеток. Гликопротеиды соседних клеток при образовании простого контакта «узнают» клетки одного типа. Наличие этих белков-рецепторов (кадгерины, интегрины и др.) характерно для определенных тканей. Они реагируют только с соответствующими им клетками. Например, Е-кадгерины участвуют в образовании контактов только между эпителиальными клетками, обеспечивая их соединение практически по всей поверхности контактирующих клеток.

Рисунок 2.7 – Простое межклеточное соединение

а – простое соединение двух эпителиальных клеток; б – связывание интегральными гликопротеидами (интегринами и кадгеринами) плазматических мембран соседних клеток.

  1. Характеристика сложных межклеточных контактов

К запирающим (изолирующим) относится плотный контакт. В этом соединении принимают участие специальные интегральные белки, расположенные на поверхности соседних клеток, образующие подобие ячеистой сети. Эта ячеистая сеть окружает в виде пояска весь периметр клетки, соединяясь с такой же сетью на поверхности соседних клеток. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды. Этот тип соединений характерен для клеток однослойных эпителиев и эндотелия.

К сцепляющим, или заякоривающим, соединениям относятся адгезивный (сцепляющий) поясок и десмосомы. Общим для этой группы соединений является то, что к участкам плазматических мембран со стороны цитоплазмы подходят фибриллярные элементы цитоскелета, которые как бы заякориваются на их поверхности.

Рисунок 2.8 – Плотное соединение

а – расположение плотного соединения (вставочная пластинка) на клетках кишечного

эпителия; б – трехмерная схема участка плотного соединения; 1 – микроворсинки.

Адгезивный (сцепляющий) поясок – парное образование в виде ленты, опоясывающей апикальную часть клетки однослойных эпителиев. Здесь клетки связаны друг с другом интегральными гликопротеидами, к которым со стороны цитоплазмы и той и другой клетки примыкает слой примембранных белков, включающих характерный белок винкулин. К этому слою подходит и связывается с ним пучок актиновых микрофиламентов. Кооперативное сокращение актиновых микрофиламентов во многих соседствующих клетках может привести к изменению рельефа всего эпителиального пласта.

Рисунок 2.9 – Адгезивный (сцепляющий) поясок.

а – расположение его в клетке; б – вид на срезе; в – схема молекулярной организации;

1 – плазмолемма; 2 – слой белков сцепления; 3 – актиновые микрофиламенты; 4 – линкерные гликопротеиды.

К сцепляющим соединениям может быть отнесен так называемый фокалъный контакт, характерный для фибробластов. В этом случае клетка соединяется не с соседней клеткой, а с элементами внеклеточного субстрата. В образовании фокального контакта также принимают участие актиновые микрофиламенты. К заякоривающим межклеточным соединениям относятся и десмосомы. Это тоже парные структуры, представляющие собой небольшую площадку или пятно диаметром около 0,5 мкм. Со стороны цитоплазмы к плазматической мембране прилежит слой белков, в состав которого входят десмоплакины. В этом слое заякореваются пучки цитоплазматических промежуточных филаментов. С внешней стороны плазмолеммы соседних клеток в области десмосом соединяются с помощью трансмембранных доменов белков – десмоглеинов. Каждая клетка эпидермиса кожи может иметь до нескольких сотен десмосом.

Функциональная роль десмосом заключается главным образом в механической связи между клетками. Десмосомы связывают друг с другом клетки в различных эпителиях, в сердечных и гладких мышцах. Полудесмосомы связывают эпителиальные клетки с базальной мембраной.

Рисунок 2.10 – Десмосома

а – расположение в клетке; б – схема ультраструктуры; 1 – плазмолемма; 2 – десмоглеиновый слой; 3 – слой десмоплакина; 4 – промежуточные филаменты; Д – десмосома; ПД – полудесмосома

Коммуникационные соединения в клетках животных представлены так называемыми щелевыми контактами и синапсами.

Щелевое соединение, или нексус представляет собой область протяженностью 0,5-3 мкм, где плазмолеммы разделены промежутком в 2-3 нм. Со стороны цитоплазмы никаких специальных примембранных структур в данной области не обнаруживается, но в структуре плазмолемм соседних клеток друг против друга располагаются специальные

белковые комплексы (коннексоны), которые образуют как бы каналы из одной клетки в другую. Этот тип соединения встречается во всех группах тканей.

Функциональная роль щелевого соединения заключается в переносе ионов и мелких молекул от клетки к клетке. Так, в сердечной мышце возбуждение, в основе которого лежит процесс изменения ионной проницаемости, передается от клетки к клетке через нексус.

Синоптические соединения, или синапсы. Этот тип соединений характерен для нервной ткани и встречается в специализированных участках контакта как между двумя нейронами, так и между нейроном и каким-либо иным элементом, входящим в состав рецептора или эффектора (например, нервно-мышечные, нервно-эпителиальные синапсы).

Синапсы – участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому.

Рисунок 2.11 – Щелевое (коммуникационное) соединение

I – коннексон; 2 – плазмолемма.

Рисунок 2.12 – Расположение различных межклеточных соединений в клетках кишечного эпителия

1 – простое соединение; 2 – плотное соединение (изолирующее); 3 – адгезивный поясок (заякоривающее соединение); 4 – десмосома (заякоривающее соединение); 5 – полудесмосома; 6 – щелевое (коммуникационное) соединение; 7 – микроворсинки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]