Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Копия КОНСПЕКТ-2.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
7.69 Mб
Скачать

4.2 Графоаналитический метод (метод построения планов скоростей и ускорений)

Данный метод применяется в случае, когда возникает необходимость определить скорости и ускорения характерных точек механизма и угловых скоростей и ускорений его звеньев в определенный момент времени, соответствующий определенному положению механизма. Построение планов скоростей и ускорений основывается на известных теоремах теоретической механики о скоростях и ускорениях точек твердого тела. Если известна скорость какой-либо точки твердого тела принимаемой за полюс, то скорость любой другой точки будет равна векторной сумме скорости полюса и относительной скорости рассматриваемой точки относительно полюса. Если в качестве полюса выбрать точку P (Рис 4.1а), скорость которой равна , то скорость произвольной точки A будет:

, (4.1)

где -скорость точки A относительно точки Р.

Рис. 4.1

С другой стороны в твердом теле расстояния между любыми точками в процессе движения остаются постоянными. Следовательно точка А в относительном движении может двигаться только по дуге окружности радиуса РА с центром в полюсе Р с угловой скоростью . Тогда

(4.2)

Направление относительной скорости будет перпендикулярно линии РА, соединяющей полюс Р с точкой А. Абсолютное значение скорости точки А определяется по правилу параллелограмма (Рис 4.1а).

Ускорение произвольной точки А твердого тела можно определить по аналогичной формуле:

(4.3)

где - абсолютное ускорение точки А, -абсолютное ускорение полюса, - относительное ускорение точки А по отношению к полюсу. Относительное ускорение в этом случае будет складываться из центростремительного - направленного из точки А к точке Р и вращательного - направленного перпендикулярно прямой АР в сторону, задаваемую направлением углового ускорения как показано на (Рис 4.1б). Величина центростремительной составляющей будет равна

(4.4)

Величина вращательного ускорения

(4.5)

Построение планов скоростей и ускорений рассмотрим на примере центрального кривошипноползунного механизма (КПМ), схема которого в заданном положении и в соответствующем масштабе показана на Рис 4.2а.

Кривошип ОА вращается с угловой скоростью .Скорость точки А определяется как

и направлена перпендикулярно кривошипу ОА в сторону задаваемую направлением вращения.

Для построения плана скоростей из произвольной точки (полюса плана скоростей) в масштабе проводим вектор (Рис 4.2б).

Рис. 4.2

Скорость точки В, принадлежащей как и точка А, шатуну АВ определяется по формуле (4.1), где относительная скорость точки В будет перпендикулярна прямой АВ. Поэтому из конца вектора (точки а) проводим линию перпендикулярную шатуну АВ. С другой стороны, абсолютная скорость точки В должна быть направлена по вертикали ОА. Из полюса проводим линию параллельную линии ОА и в точке пересечения этих линий находим точку в, являющуюся концом вектора абсолютной скорости точки В ( ) в выбранном масштабе плана скоростей. Вектор ав на плане скоростей соответствует относительной скорости точки В по отношению к точке А ( ). Из плана скоростей находим

и

.

Угловая скорость вращения шатуна АВ определиться как:

.

Для построения плана ускорений определим ускорения точки А (конца кривошипа ОА, который вращается с постоянной угловой скоростью.

Это ускорение направлено из точки А к точке О. Выбирая произвольную точку в качестве полюса плана ускорений (Рис 4.2в), переносим вектор в точку полюса, в соответствующем масштабе . Ускорение точки В конца шатуна, как следует из выражения (4.3), определится как векторная сумма ускорения точки А относительного центростремительного и вращательного ускорений точки В по отношению к точке А.

Направление центростремительного ускорения точки В будет параллельна прямой АВ, а величина

Строим на плане ускорений в соответствующем масштабе ускорение из конца вектора . Вращательная составляющая ускорения точки В не известна по величине и направлена перпендикулярно АВ поэтому из конца вектора на плане ускорений проводим линию перпендикулярную АВ.

Абсолютное ускорение точки В очевидно будет направлено по линии ОВ. Тогда, проводя из точки линию параллельную ОВ, на пересечении этих двух прямых получаем точку в, соответствующую концу вектора на плане ускорений. Величину ускорения точки В получаем из плана ускорений с учетом масштаба

.

Найдя аналогично величину вращательного ускорения можно определить угловое ускорение звена АВ

.

Графический и графоаналитический методы исследования наглядны и универсальны, так как позволяют определять скорости и ускорения звеньев механизмов любой структуры, но не обладают достаточной точностью и трудоемки.