Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Систематика высших растений.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
610.3 Кб
Скачать

Систематика высших растений

Проблема происхождения высших растений

Предпосылки выхода растений на сушу. Появление наземных, или высших, растений ознаменовало начало новой эры в жизни нашей планеты. Освоение растениями суши сопровождалось появлением новых, наземных, форм животных; сопряженная эволюция растений и животных привела к колоссальному разнообразию жизни на земле, изменила ее облик.

Предпосылки появления наземных растений:

  1. независимый ход эволюции растительного мира подготовил появление новых, более совершенных форм.

  2. за счет фотосинтеза морских водорослей в атмосфере земли произошло увеличение количества кислорода; к началу силурийского периода оно достигло такой концентрации, при которой оказалась возможной жизнь на суше.

  3. в начале палеозойской эры на обширных территориях земли происходили крупнейшие горообразовательные процессы, в результате которых возникли Скандинавские горы, горы Тянь-Шань, Саяны. Это вызвало обмеление многих морей и постепенное появление суши на месте бывших мелких водоемов. Если раньше водоросли, населявшие литоральную зону, только в отдельные кратковременные периоды жизни оказывались вне воды, то по мере обмеления морей они переходили к более длительному пребыванию на суше. Это, очевидно, сопровождалось массовой гибелью водорослей; выживали лишь те немногие растения, которые смогли противостоять новым условиям жизни.

Выход растений на сушу начался, очевидно, в конце силура (400 млн. лет назад).

В 1859 году канадский геолог Джеймс Досон в девонских отложениях на полуострове Гаспе в Канаде обнаружил остатки удивительно примитивного высшего растения не похожего ни на одно из известных науке в то время. Его вильчато разветвленные стебли были лишены листьев, а проводящая система имела примитивный тип организации. Досон дал своему растению название Psilophyton princeps, что можно перевести на русский язык как "голорос первичный".

Позднее в Шотландии были найдены и другие, еще более примитивные растения: риния, хорнеофит и куксония. Эти древние растения были выделены в особый отдел, для обозначения которого прежде употреблялось название "псилофиты" (Psilophyta), но в настоящее время многие ученые предпочитают название "риниофиты" (Rhiniophyta).

Риниофиты – это силуро-девонские растения, которые дали начало всему разнообразию наземной флоры, относятся к пойкилогидричесим растениям. Они жили наполовину в воде, водный обмен у них не стабилизирован и жизненные процессы зависели от наличия влаги в окружающей среде. Предполагается, что предками всех существующих растений были водоросли, в частности, зеленые.

Первые наземные растения стелились по земле, тело было дорзовентральной («дорзум» - спина, «вентер» - живот) структуры пластинчатой формы, с воздухом соприкасались одной стороной.

С момента выхода на сушу растения развиваются в двух основных направлениях: гаметофитном и спорофитном. Высшим растениям свойственна правильная смена поколений в цикле их развития. Растение имеет две фазы развития, которые сменяют одна другую: гаметофит и спорофит. Гаметофит — это половое поколение, на котором образуются половые органы — антеридии и архегонии. Спорофит — неполовое поколение, на котором формируются органы неполового размножения. Спорофит — это нормально развитое растение, кото­рое имеет корень, стебель и листья. На спорофите образуются споры, которые прорастают и дают начало гаметофиту. Подобная смена поколений в цикле развития растений сложилась эволюционно, в ходе естественного отбора. Гаметофитное направление было представлено мохообразными, а спорофитное — остальными высши­ми растениями, включая цветковые. Спорофитная ветвь оказалась более приспособленной к наземным условиям.

Таким образом, как приспособление к новым условиям жизни на суше появляется спорофит, тело которого приобрело стеблевидную форму. Это был небольшой стебель с верхушечной точкой роста и вертикальным положением, зеленый. Впоследствии как приспособление к увеличению ассимилирующей поверхности появляются листья – вторичные органы и последним возникает корень.

Предки современных наземных растений имели форму дихотомически ветвящихся теломов. В результате процесса «перевершинивания» происходит смена типа ветвления и морфологическая и физиологическая дифференциация ветвей. Более сильные ветви, принявшие направление материнских, становятся осевым органом (стеблем) с осевой симметрией. Более слабые ветви прекращают верхушечный рост, прекращается ветвление и они уплощаются, становятся листьями.

Происхождение стебля

Стебель — существенная часть растений, он легко воспроизводит и корни, и листья. Главные функции стебля — механическая поддержка кроны и проводящая. По коре его идет ток питательных веществ из листьев в корни, чем обусловливается рост и корневой системы. По древесине, идет водный ток из корней в листья. Основная форма стебля — форма колонны — так проста, что в этом отношении никакой особой эволюции от крупной морской водоросли лессонии через стволы плауновых деревьев каменноугольной эпохи к стволам крупных хвойных и лиственных деревьев не замечается. Наоборот, анатомия стебля дает очень сложную картину постепенного усложнения и усовершенствования проводящего аппарата.

У бурых водорослей в центральной части их стебля находятся длинные трубчатые клетки, имеющие анастомозы и сообщающиеся одна с другой с помощью ситовидных пластинок. Последнее — не что иное, как поперечные перегородки, отделяющие одну клетку от другой. Протоплазмы же их проходят через поры сит, неся с собой питательные вещества. Ствол массивен, ассимиляция происходит в поверхностных слоях ткани, внутренние части, затененные наружными, будут голодать, если их не будет пронизывать система трубочек с движущимися растворами внутри.

У мхов, в их тонких стеблях, в центре находится проводящий цилиндр из узких тонких трубчатых клеток, образующих точно пригнанные вертикальные ряды.

Поперечные разрезы шлифов стеблей псилофитов показывают сразу, что эти первые растения суши были построены сложнее мхов, хотя и сходны с ними. У ринии в центре стебля находился участок толстостенных клеток, проводивших воду от корневища к верхушкам побегов. Участок этот был окружен кольцом многочисленных тонкостенных трубчатых клеток, проводивших питательные вещества от зеленых верхних частей растения в корневище.

Поперечное сечение стебля

Rhynia gwynnevaughanii: 1 – кутикула; 2 – наружный слой фотосинтезирующих клеток, но еще не эпидермис; 3 – склеренхима со стереидными пучками проводящих клеток (аналоги сосудов); 4 – устьице; 5 – центральный пучок клеток; 6 – центральная полость

У астероксилона на продольных шлифах видны водоносные клетки — трахеиды с характерными кольчатыми или сетчатыми утолщениями на стенках.

Реконструкция Asteroxylon

Сосуды в стебле Asteroxylon. Диаметр сосуда 25 мкм.

Райни, Шотландия, нижний девон.

Совокупность всех таких проводящих клеток, имеющая вид внутреннего шнура, пролегающего между более рыхлой мякотью коры стебля, получила наименование стеле, или столба.

Эволюция стеле папоротников, приведшая к большому разнообразию и строения, и расположения, в тех случаях, когда их много, привела в конце концов к выработке наиболее рационального построения древесины и коры у цветковых растений.

Если у папоротников древесина всегда состоит из водоносных клеток или трахеид, то у хвойных в их молодых тканях уже есть небольшие спиральные сосуды (в протоксилеме), у гнетовых их значительно больше и они принимают некоторое участие также и в строении вторичной древесины. У однодольных не развит еще камбий, т. е. специальная зародышевая или образовательная ткань проводящих пучков, что мешает им срастаться вместе и расти в толщину. Поэтому у этих строение стволов менее плановое, менее совершенное, чем у двудольных растений, дающих благодаря камбию полное разделение ствола на кору и древесину.

Таким образом, процесс эволюции охватывает все детали строения стебля, делая его достаточно совершенным орудием как механической крепости растения, так и физиологической связи между двумя активными системами органов растительной жизни, именно между листовой и корневой системами.

Происхождение листа

Первые листья, которые вполне оправдывают такое их обозначение, — это листья некоторых псилофитов (род Asteroxylon), обладавшие, по-видимому, уже вполне развитым устьичным аппаратом. Листья ископаемых и современных плаунов следуют за ними. Эти листья все еще примитивные: у них нет завершенного разделения на черешок и пластинку, нет развитой сети жилок; анатомически оба основных аппарата листа, фотосинтетический — палисадная паренхима — и транспирационный — паренхима губчатая, выражены несовершенно, как несовершенно и различие между верхней и нижней сторонами листа. Правда, подобные листья встречаются и у растений, принадлежащих к высоко организованным семействам, но там это результат упрощения, вызываемого внешними условиями, здесь же — первичное строение.

У папоротникообразных, названных Джеффреем Pteropsida, листья крупные, с хорошей дифференцировкой на черешок и пластинку. Их примитивность сказывается главным образом в там, что они растут верхушкою, а не основанием, как листья цветковых. Такой способ роста позволяет им развивать нередко добавочный рост отдельных частей листа, курчавость краев и другие уродливости.

У цветковых имеется колоссальное разнообразие листовых форм и строений. Сеть жилок в своей более простой форме дает очень мало анастомозов. Главные жилки располагаются параллельно одна другой, и при перерезке любой из них примыкающий к верхней части перерезанной жилки участок ткани засыхает. Более прогрессивный тип жилкования — сетчатый. Если перерезать одну из главных жилок у листа этого типа, то ткань кругом остается жива, так как получит воду обходным путем, через боковую сеть.

Такие сложные листья, как листья гороха, акации и массы других бобовых, со свободным движением отдельных частей, с организованным отводом продуктов ассимиляции из тканей (мякоти) в ситовидные трубки и пр., являются наиболее совершенным выражением эволюции листа. От листа плауновых до листа гороха пройден сложный и долгий путь, приведший к выработке прекрасного пластичного, сообразно условиям среды, аппарата фотосинтеза; фотосинтез же, как известно, — это главный физиологический процесс зеленых растений.

Происхождение корня

Полярность, т. е. противоположение испаряющей части растения и части, всасывающей воду, — вот первый импульс к образованию первых корнеподобных органов.

Гаметофиты мхов, даже наиболее крупных (исключение - сфагновые мхи и мхи подводные), поглощают воду ризоидами, т. е. отдельными клетками, покрывающими нижнюю часть стебля. Никакого подобия настоящего корня у мхов нет, как вообще его нет ни у одного гаметофита гаплоида.

У древнейшей группы наземных растений, у псилофитов, корней не было вовсе, воду они вбирали, так же как и мхи, с помощью ризоидов. Только у рода астероксилон, побеги которого слабо напоминают плауновые растения, есть вильчато разветвленные, отходящие от корневища отростки, напоминающие корни.

У плаунов, хвощей и у всех папоротников, как у растений диплоидных, корни уже вполне развиты. Они всегда невелики, отходят от корневища или от коры стебля и неглубоко погружаются в почву. Ввиду того, что все эти растения жили и живут во влажных местностях, они могут довольствоваться поверхностными корнями.

Чем крупнее растение, чем более развита его испаряющая крона, тем более повышается потребность в глубоко зарывающейся в почву мощной корневой системе.

У голосеменных растений впервые появляется стержневой корень, закладывающийся уже в период развития зародыша в семени. Такой корень дает возможность молодому растению быстро углубиться в почву и распределить боковые корни в таком слое почвы, который наилучше обеспечивает водоснабжение растения.

Однако у корня есть и еще функция — это функция прикрепления к почве, функция механическая. Уже у крупных морских водорослей типа ламинарии от нижней части стебля отходят мощные ризоиды, впивающиеся в камни и удерживающие водоросль на определенной глубин. Здесь функция всасывания не имеет значения, все дело в механическом сопротивлении среде.

Корни наших деревьев должны отвечать огромному сопротивлению, так как ветер очень сильно давит на обширную площадь кроны; дерево гнется, иногда ломается, а корни не поддаются, сохраняя связь между деревом и почвой. Зато при условиях, неблагоприятных развитию корневой системы, ветровал неизбежен.

У растений, живущих на очень сухих почвах, поражает длина корней, часто во много раз превышающая в вышину наземные части растения.

Анатомически корень состоит из основного цилиндра, коры, конуса нарастания и защищающего этот конус чехлика. Кора на некотором расстоянии от конца корня несет зону корневых волосков, усиливающих всасывание. Осевой цилиндр содержит в себе проводящие воду сосуды, через которые она поступает в стебель. Клетки коры развивают колоссальное осмотическое давление, обеспечивающее движение воды и сосудах. Если корень находится в симбиозе с грибками, образуя микоризу, то корневые волоски, как правило, отсутствуют.

Наконец, корень постоянно растет и своими движениями при этом роет землю. Подвергаясь действию внешних факторов: силе тяжести, свету, теплу, влажности, присутствию кислорода воздуха и химизму почвенного раствора, — корень растет неравномерно, искривляется и проникает в наиболее благоприятные для него слои почвы. Таков результат длительной, постоянно поддерживающейся борьбы за существование. Разумеется, и эта способность корня ориентироваться в почве далась не сразу, а выработалась постепенно.

Основные ароморфозы растений, позволившие занять сушу

Ароморфоз (морфофизиологический прогресс) - это возникновение в ходе эволюции признаков, значительно повышающих уровень организации живых организмов или уровень жизнедеятельности. Ароморфозы дают преимущества в борьбе за существование и дают возможность освоения новой среды обитания. К ароморфозам растений относят фотосинтез, многоклеточность, редукцию полового поколения (гаметофита) у высших растений.

При выходе растений на сушу, произошло достаточно много изменений в морфологии, анатомии и физиологии растений.

1. Образование и усложнение покровной ткани от тонкого эпидермиса (плотно сомкнутых клеток, лежащих одним слоем и покрытых кутикулой) до пробки (образующейся из эпидермиса или пробкового камбия (филлогена), состоящей из нескольких слоев мертвых клеток, чьи клеточные стенки содержат суберин или корки, которая заменяет пробку при росте побега в толщину.

2. Образование специальных структур, выполняющих функцию газообмена, устьица на листе (у наземных цветковых они на нижней, затененной стороне листа, а у ведущих полуводный образ жизни на верхней стороне листа) или молодой части побега там, где орган покрыт эпидермисом, и чечевички, образующиеся на пробке.

3. Образование механической ткани: колленхима, волокна и склереиды. Колленхима располагается под эпидермисом и входит в состав сосудисто-волокнистых пучков, живая ткань, клетки которой не лигнифицированы, волокна часто сопровождают ксилему и флоэму, склереиды распределены в паренхиме, и волокна и склереиды – мертвые лигнифицированные клетки. Общая функция всех типов механической ткани – поддержание органов растения в воздушной среде, где влияние силы тяжести больше, чем в водной, где также действует сила Архимеда.

4. Появление проводящей ткани: сосуды и ситовидные трубки, обеспечивающие перенос воды и питательных веществ по всему организму растения, от места поглощения или образования до места использования или запасания.

5. Появление запасающей ткани, прежде всего ткани, запасающей воду. Первые зачатки такой ткани появляются у сфагновых мхов (мертвые лигнифицированные клетки, заполняющиеся водой в период ее изобилия).

6. Появление всасывающей ткани во всасывающей зоне корня, выполняющей функцию поглощения воды и минеральных солей.

7. Помимо образования новых типов тканей при выходе растений на сушу произошло также образование новых органов при дифференциации слоевища (таллома), характерного для низших растений (водорослей).

8. Уже у мохообразных происходит начальная дифференциация тела растения на побег и корень (у мохообразных появляются ризоиды), но уже у папоротникообразных появляются настоящий побег, на котором выделяются листья и стебель (или корневище), и корень. У голосеменных происходит дальнейшее развитие и усложнение этой системы, которая достигает своего совершенства, относительно других типов этой системы, в отделе покрытосеменных.

9. Новый орган- корень также имеет ряд особенностей, связанных с жизнью на суше, т. к. появление этого органа связано с выходом растений на сушу, Прежде всего, корень закрепляет растение в субстрате, кроме того, корень осуществляет поглощение веществ растением (вода и минеральные соли), в связи с этой функцией у корня имеется зона всасывания, образованная всасывающей тканью, проводящей системой, осуществляющей проведение этих веществ к побегу, а также проведение продуктов анаболизма растения (прежде всего продуктов фотосинтеза) к тканям корня.

10. Способность к синтезу кутина, обеспечило защиту от лишнего испарения воды тканями растения. Появление способности к синтезу лигнина, привело к образованию механических элементов в тканях растения.

11. Появление спор с прочными оболочками, способными переносить высыхание, приспособленными для переноса в воздушной среде (расселение ветром), а затем образование семени, защищающего зародыш спорофита от высыхания и других неблагоприятных факторов среды.

12. Переход к двум формам существования в жизненном цикле: гаметофит и спорофит, в дальнейшем развитие происходит по пути доминирования спорофита над гаметофитом, диплоидный спорофит может накапливать большее количество мутаций в гетерозиготном состоянии, что позволяет ему с большей скоростью реагировать на изменения среды, чем гаплоидному гаметофиту, в чьем генотипе содержится меньше генетических изменений, это повышает выживаемость гаметофита в стабильной среде, но снижает выживаемость в изменяющейся среде (считается, что водная среда более стабильна, чем воздушная.).

13. Переход распространения гамет и оплодотворения от водного (низшие, мохообразные), к капельному (папоротникообразные), а затем и полный отказ от использования воды: образование пыльцевой трубки, по которой безжгутиковый спермий проникает к яйцеклетке (голосеменные и покрытосеменные).

14. Появление корневого давления и транспирации, позволяющих поглощать воду из почвы и транспортировать ее к листьям, цветкам и плодам, за счет таких физических сил как капиллярные силы и неразрывность водяного столба в сосудах.

При выходе растений на сушу произошло образование огромного количества ароморфозов, позволивших растениям занять новую для них среду обитания.

Основная ботаническая дисциплина — систематика растений — разделяет многообразие растительного мира на соподчинённые друг другу естественные группы — таксоны (классификация), устанавливает рациональную систему их наименований (номенклатура) и выясняет родственные (эволюционные) взаимоотношения между ними (филогения). В прошлом систематика основывалась на внешних морфологических признаках растений и их географическом распространении, теперь же систематики широко используют также признаки внутреннего строения растений, особенности строения растительных клеток, их хромосомного аппарата, а также химический состав и экологические особенности растений.

Таксономические характеристики в ботанике: Царство - Растения или растительный мир     · Подцарство         · Отдел (группа)             · Подотдел (подгруппа)                 · Класс                     · Подкласс                         · Порядок                             · Семейство                                 · Род                                     · Вид

Царство растения по древности происхождения, строению и образу жизни делятся на два больших подцарства: низ­шие и высшие.

НИЗШИЕ РАСТЕНИЯ (слоевцовые, или талломные, растения) - подцарство растений. Тело низшего растения (таллом, или слоевище) не расчленено на корень, стебель и лист. Среди них много одно­клеточных и колониальных форм. Низшие растения развиваются в водной или влажной среде (за некоторым исключением). К ним относятся Красные водоросли (Багрянки), Настоящие водоросли и Лишайники.

ВЫСШИЕ РАСТЕНИЯ - подцарство растений. Синонимы - зародышевые растения (Embryobionta, Embryophyta), побеговые растения (Cormophyta, Cormobionta), теломные растения (Telomophyta, Telomobionta). В отличие от низших растений тело высших растений разделено на специализированные органы — листья, стебель и корень. Для высших растений характерны в основном наземные условия суще­ствования. Насчитывают свыше 300 тысяч видов. К высшим растениям относятся отделы: риниофиты, моховидные, псилотовидные; плауновидные, хвощевидные, папоротниковидные, голосеменные и цветковые (покрытосеменные) растения. Моховидные, Плауновидные, Хвощевид­ные, Папоротниковидные расселяются при помощи спор (споровые), Голосеменные и Покрытосемен­ные (Цветковые) — при помощи семян (семенные).

Размножение растений. Для всех высших растений характерно чередование в жизненном цикле полового и бесполого размножения и связанное с этим чередование поколений (фаз развития) — гаплоидной (п) (гаметофит) и диплоидной (2п) (спорофит). На спорофите возникают мешковидные образования — спорангии (органы бесполого размножения), в которых в результате спорогенеза, со­провождающегося мейотическим делением, формируются гаплоидные споры. Из спор развивается гаметофит. На нем формируются особые половые структуры гаметангии (органы полового размножения), в которых образуют­ся гаметы.

Мужские половые органы, где формируются спермато­зоиды, называются антеридии, женские половые органы, где формируются яйцеклетки, называются архегонии. Если на гаметофите развиваются и архегонии, и антеридии, то он называется обоеполым, если только антеридии, то муж­ским, если только архегонии, то женским. При слиянии гамет образуется зигота. Из зиготы развивается споро­фит.

Эволюция растений шла в направлении увеличения раз­меров бесполого поколения (спорофита) и редукции поло­вого поколения (гаметофита). У подавляющего большин­ства высших растений (за исключением моховидных) в жизненном цикле преобладает спорофитная фаза.

ПОДЦАРСТВО ВЫСШИЕ РАСТЕНИЯ, ИЛИ ВЫСШИЕ СПОРОВЫЕ РАСТЕНИЯ

К высшим споровым растениям относятся моховидные, плауновидные, хвощевидные, пслотовидные и папоротниковидные.

Отдел моховидные 20 тысяч видов

Среди высших растений мхи образуют обособленную группу. Это — единственная в истории растительногр мира линия эволюции, связанная с регрессивным развитием спорофита. Они представляют собой тупиковую, или слепую, ветвь разви­тия растений, а по общей организации и по экологии еще близ­ки к водорослям.

Характерными признаками мхов являются:

1) отсутствие настоящих корней. У некоторых представите­лей подземная часть представлена ризоидами;

2) у маршанциевых, антоцеротовых  отсутствует деление на лист и стебель — они являются слоевищными, как водоросли или лишайники;

3) устичный аппарат крайне примитивен, проводящая система не развита, проводящие функции выполняет паренхима; не имеют лигнина в клеточных стенках;

4) полное преобладание гаметофазы в общем цикле разви­тия. Половое и бесполое поколение представляют собой одно растение, при этом спорофит не может существовать без гаметофита;

5) сильно зависят от влажности воздуха (временно прекращают жизнедеятельность в засушливый период).

Моховидные включают в себя классы

I. Класс Листостебельные мхи, или Мхи, или Бриопсиды (Bryopsida, или Musci). Подклассы 1. Sphagnidae. 2. Bryopsidae. 3. Andreidae. II. Класс Печеночники, или Печеночные мхи (Marchantiopsida, или Hepaticopsida). Подклассы 1. Jungermanniidae. 2. Marchantiidae. III. Класс Антоцеротовые, или Антоцеротопсиды (Anthocerotopsida).

Бриопсиды (Bryopsida) около 800 родов и до 15 тысяч видов, относимых примерно к 80 семействам.

Делится на подкласса: под­класс зеленые мхи и подкласс белые, или торфяные, мхи.

Подкласс зеленые мхи. Рассмотрим подкласс зеленых мхов на примере кукушкиного льна.

Кукушкин ленодин из наиболее высокорослых мхов, его стебель достигает 50 см в высоту. Растет крупными по­душкообразными дернинами. Стебель мха густо покрыт ли­стьями и имеет ризоиды. Относится к двудомным растени­ям. На женском растении (гаметофите) между верхними междоузлиями образуется архегоний — женский половой орган. Архегоний является многоклеточным образованием бутыльчатой формы. Суженная часть — шейка, а расширен­ная часть — брюшко, в котором помещается крупная яйце­клетка. На мужском растении (гаметофите) среди верхних красных листьев развиваются антеридии — мужские поло­вые органы, в которых образуются двужгутиковые спермато­зоиды. Антеридии имеют вид продолговатых или округлых мешочков на ножке. При созревании архегония шейковые или брюшные клетки ослизияются и на их месте формиру­ется узкий канал, по которому сперматозоид может проник­нуть в яйцеклетку. В период обильных дождей сперматозои­ды подплывают к архегониям. Как предполагают, они обладают хемотаксисом к содержимому слизи архегония. Один из сперматозоидов проникает в архегоний и продол­жает движение к яйцеклетке. Слияние гамет и дальнейшее развитие зиготы происходит внутри архегоний. Из зиготы через несколько месяцев прорастает спорофит (спорогон), который представляет собой коробочку на длинной ножке.

Нижняя часть ножки превращена в гаусторий (присоску), внедряющийся в тело гаметофита. Спорофит, таким образом, лишен самостоятельности и полностью зависит от гаметофи­та. Сверху коробочка прикрыта легко опадающим колпачком с т онкими, направленными вниз волосками, напоминающими льняную пряжу (отсюда и название растения). В коробочках происходит образование спор редукционным делением (мейозом). При этом происходит редукция хромосом вдвое, и, сле­довательно, споры имеют гаплоидный набор хромосом. Все cпoры одинаковы (изоспоры). Спора попадает в почву и про­растает в протонему (типа нитчатой водоросли), на которой формируется гаметофит (взрослое растение), имеющий гапло­идный набор. На этом цикл замыкается, и все повторяется снова.

Подкласс белые, или торфяные, мхи. 300 видов

Все представители подкласса сфагновых мхов — влаголюбивые растения, и побег сфагнов обладает многочисленными особенностями, позволяющими растению удерживать и сохранять воду. Торфя­ные мхи беловато-зеленого цвета не имеют ризоидов. Стебель сфагнов прямостоячий, редкооблиственный, с многочисленными густооблиственными боковыми ветвями (см. например, изображения сфагна дубравного или сфагна Вульфа).

Ветви на верхушке стебля скучены в плотную головку, ниже — собраны в пучки; при этом часть ветвей каждого пучка оттопырена в сторону, благодаря чему побеги соединяются в более или менее плотные дерновинки или подушечки. Другая часть ветвей каждого пучка свисает вдоль стебля, образуя своеобразный фитиль, по которому передвигается вода. Ризоидов у взрослого растения нет. Побег нарастает в верхней части и постепенно отмирает снизу («отторфовывается»). Так в течение многих лет обра­зуются огромные залежи торфа. Процесс торфообразования происходит благодаря застойному переувлажнению, отсут­ствию кислорода и созданию мхами кислой среды. Эти усло­вия в совокупности оказываются неблагоприятными для про­цессов гниения, т. е. для развития грибов и бактерий, что препятствует разложению сфагнумов.

Некоторые ветви на верхушке побега растут быстрее остальных и при отмирании стебля снизу дают начало новому побегу, вследствие чего подушечки сфагна постепенно увеличиваются в объеме.

Листья сфагнов однослойные, без жилки, разнообразной формы. Фотосинтез проте­кает в живых ассимиляционных клетках, содержащих хлоропласты. Листья сфагнума обладают гигроскопическим свойством за счет того, что в своем строений имеют мертвые гиалино­вые клетки, способные удерживать воду. При испарении воды гиалиновые клетки заполняются воздухом, поэтому сухие растения сфагна приобретают беловатый оттенок.

Антеридии и архегонии у сфагнов располагаются на особых ветвях одного и того же растения или на разных растениях. Антеридии сидят в пазухах покровных листьев. Ветви с антеридиями обычно булавовидно вздуты и ярко окрашены в различные цвета, но после созревания антеридиев ветви удлиняются и не отличаются по окраске от остальных отстоящих ветвей растения. Архегонии располагаются на концах укороченных почковидных женских веточек также под защитой покровных листьев. При созревании коробочка прорывает колпачок, который остается в виде оборки при ее основании, и в это же время часть стебля, расположенная между стопой и покровными листьями, сильно удлиняется, образуя ложноножку, которая выносит шаровидную коробочку далеко за пределы покровных листьев (рис. 9,10). Коробочка обычно вскрывается путем резкого отбрасывания крышечки, при этом споры выбрасываются на расстояние до 10 см.

Подкласс андреевые мхи (Andreidae )

Андреевые мхи – это группа наскальных мхов. Они способны поселяться на монолитной каменистой породе, буквально вгрызаясь в каждую трещинку ризоидами. Формируют довольно плотные дерновинки. В клеточных стенках листьев андреевых мхов находится красный пигмент, благодаря чему растения имеют темно-красный цвет. Этот пигмент выполняет функцию светофильтра для хлоропластов, которые у этих мхов не способны нормально фунционировать при полном освещении.

В мире насчитывается около 100 видов андреевых мхов, большинство из которых произрастают в полярных регионах северного и южного полушарий. Некоторые виды растут в альпийском поясе гор тропиков.

Andreidae по некоторым признакам сходны со сфагновыми мхами, по некоторым – с печеночными и бриевыми. Так, их листостебельный гаметофит по внешнему виду напоминает гаметофит кукушкина льна (род Polytrichum). Так же, как и у бриевых мхов, листья имеют центральную жилку. Так же, как сфагновые мхи, андреевые имеют пластинчатую протонему. Коробочка андреевых мхов раскрывается на несколько створок (рис. 27), как у печеночников, но в отличие от последних, верхние концы створок остаются соединенными друг с другом, что придает созревшему спорогону вид японского фонарика. Так же, как и у сфагновых мхов, у андреевых ножка спорогона очень укорочена, так что коробочка выносится вверх с помощью ложноножки, образующейся из гаплоидных тканей архегония.