- •Федеральное агентство по образованию рф
- •Основы рефлектометрии
- •1.1 Рэлеевское рассеяние в волоконных световодах
- •1.2 Бриллюэновское рассеяние в волоконных световодах
- •1.3 Рамановское рассеяние в волоконных световодах
- •1.4 Эффект антистоксова излучения
- •2.1 Рефлектометрия во временной области
- •2.1.1 Рефлектометрия во временной области – традиционный подход.
- •2.1.2 Когерентная временная рефлектометрия.
- •2.1.3 Корреляционная рефлектометрия с применением псевдослучайного сигнала.
- •2.1.4 Слабокорреляционная рефлектометрия.
- •2.1.5 Рефлектометрия на основе счета фотонов.
- •2.2 Рефлектометрия в частотной области
- •2.2.1 Рефлектометрия с частотным сканированием.
- •2.2.2 Рефлектометрия с синтезом функции когерентности.
- •2.3 Поляризационная рефлектометрия
- •2.4 Выводы по главе
- •3.1 Временной когерентный симметричный рефлектометр
- •3.2 Симметричный некогерентный рефлектометр
- •3.3 Симметричный рефлектометр с синтезом функции когерентности
- •3.4 Обсуждение результатов
- •4.1 Изгибные потери в оптических волокнах
- •4.2 Искажения формы контура волоконной решетки Брэгга
- •4.3 Симметричные методы контроля изгибных потерь в вс и искажений контура врб
- •4.3.1 Симметричное зондирование участков вс с изгибными потерями
- •4.3.2 Симметричное зондирование контура врб
- •4.3.3 Мониторинг профиля контуров нескольких врб в волп
- •5.1 Системы несимметричной бриллюэновской рефлектометрии
- •5.2 Симметричный бриллюэновский рефлектометр
- •5.2.1 Физические принципы работы системы с симметричным двухчастотным гетеродинированием.
- •5.2.2 Схема экспериментальной установки.
- •5.2.3 Выводы по разделу.
- •5.3 Вопросы применения бриллюэновского рефлектометра
- •5.3.1 Бриллюэновский датчик механического напряжения вс.
- •3.3.2 Бриллюэновский датчик температуры.
- •6.1 Лазерные диоды
- •6.1.1 Многомодовые (mlm) лазеры, или лазеры с резонаторами Фабри-Перо.
- •6.1.2 Одномодовые (slm) лазеры.
- •6.1.3 Полупроводниковый лазер с распределенной обратной связью (dfb).
- •6.1.5 Лазер с вертикальной резонаторной полостью и излучающей поверхностью (vcsel).
- •7.1 Амплитудно-фазовый метод преобразования одночастотного колебания в симметричное двухчастотное
- •7.2 Спектр выходного излучения амплитудно-фазовых электрооптических уфдли
- •7.3 Влияния параметров преобразования частоты на спектральный состав излучения на выходе аэм
- •7.4 Реализация симметричного уфдли
- •8.2 Конструкция детектора на основе кремниевого фотодиода
- •8.3 Обзор фотодиодных детекторов на основе InGaAs
- •8.4 Лавинные фотодиоды (apd)
- •8.4.1 Рабочие параметры apd.
- •8.4.2 Типы apd.
- •8.4.3 Apd с разделением процессов поглощения и умножения (sam apd).
- •8.5 Оптические приемники
- •Заключение
- •Список литературы
- •Глава 1 6
- •Глава 2 21
- •Глава 3 36
- •Глава 4 45
- •Глава 5 61
- •Глава 6 70
- •Глава 7 79
- •Глава 8 98
1.3 Рамановское рассеяние в волоконных световодах
Стимулированное рамановское рассеяние (от англ. SRS – Stimulated Raman Scattering) представляет собой значительно меньшую проблему в сравнении со стимулированным Бриллюэновским рассеянием (SBS). Реальные ВОЛП допускают использование оптического усилителя с уровнем порядка 25 дБм или нескольких усилителей с меньшим уровнем выходного сигнала.
SRS по своему характеру проявления близко к SBS, но вызывается другими физическими явлениями. SRS является частотно зависимым и проявляется более выражено на коротких волнах в сравнении с длинноволновыми (т.е. на более высоких частотах).
Явления SBS и SRS проявляются в том, что оптический сигнал рассеивается и смещается в область более длинных волн (рис.1.6) [9].
Рис. 1.6. Сравнение SBS и SRS
Если при SBS спектр стимулированного излучения узкий (не более 60 МГц) и смещен в длинноволновую сторону на 10…11 ГГц, то при SRS спектр стимулированного излучения широкий (~7 ТГц) и смещен в длинноволновую сторону на величину порядка 10…13 ТГц. При схожести SBS и SRS, можно выделить несколько существенных отличий:
SBS наблюдается только для встречной волны, рассеяние происходит только назад, по направлению к источнику сигнала. SRS же наблюдается как для встречных волн (стоксово излучение с уровнем порядка – 50…– 60 дБ относительно интенсивности исходного излучения), так и для сонаправленных волн (антистоксово излучение с уровнем порядка – 70…– 80 дБ относительно основной волны). Стоксовая и антистоксовая волны располагаются частотно симметрично относительно основной передаваемой частоты излучения.
При SRS спектр стимулированного излучения смещен относительно сильнее (разница примерно на три порядка), а ширина его намного больше (примерно на три порядка), чем при SBS.
Пороговая мощность SRS намного больше (примерно на три порядка), чем SBS.
С другой стороны эквивалентное импульсному синтезированное зондирование волокна приводит к возможности измерения температурных полей, которое характерно для измерительных волоконных систем, либо определению условий залегания ВС, например, под водой при размыве грунта.
Комбинационное рассеяние происходит при взаимодействии света с молекулами вещества, сопровождающимся переходами молекул из одного энергетического состояния в другое. При этом электронное состояние молекулы остается неизменным, лишь энергия ее колебаний увеличивается либо уменьшается на величину, равную разности энергий соседних колебательных уровней Екол. Если частота падающего света равнялась 0 , то в спектре рассеянного света наряду с линией при 0 появляются симметрично расположенные линии при частотах
СТ =0 – кол, (1.10)
АСТ=0 + кол. (1.11)
где кол Екол, СТ и АСТ – частоты соответственно стоксовской и анти-стоксовской линий (рис. 1.7).
Рис. 1.7. Схематическое изображение спектра
рассеянного света
Анти-стоксовская линия всегда имеет меньшую интенсивность. Поэтому отношение интенсивностей двух линий комбинационного рассеяния зависит от температуры вещества
.
(1.12)
После окончания процедуры рефлектометрического измерения, с помощью специального программного обеспечения рассчитывают отношение интенсивностей стоксовской и антистоксовской линий спектра рассеяния и, используя (1.12), находят распределение температуры по длине волокна.
