Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Vorob'evaEA.Vorob'evaEV_Lineinaya__algebra,Vectornaya_algebra,Analit_geometriya

.pdf
Скачиваний:
34
Добавлен:
15.06.2014
Размер:
1.93 Mб
Скачать

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. BM – кратчайшее расстояние от точки

B до окружности.

Очевидно,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BM = BC CM .

 

C (a, b)

центр окружности,

 

 

CM -

ее

 

 

радиус.

Приведем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B(7,6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

уравнение окружности к каноническому виду (x2 - 2x +1)+ (y 2 + 4 y + 4)= 25

2 или

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x -1)2 + (y + 2)2 = 52

C (1, - 2),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

R = 5 .

Вычислим

 

 

 

 

длину

отрезка

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BC =

 

 

 

 

 

 

 

= 10 . BM = BC CM = 10 − 5 = 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1- 7)2 + (- 2 - 6)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C (1,−2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: BM = 5 .

 

 

 

 

 

 

Задача 5.

 

 

Составить уравнение окружности, диаметром которой является отрезок

 

прямой 12x + 5 y + 60 = 0 ,

заключенный между осями координат.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Преобразуем уравнение

прямой 12x + 5 y + 60 = 0 к

 

виду «уравнение

прямой

в

 

отрезках

на

осях»:

 

x

 

 

 

 

y

 

 

 

 

= 1 , откуда видно, что A(- 5, 0) -

B(0, -12) и точки пересечения прямой с

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 5

 

-12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

осями координат, AB - диаметр окружности по условию задачи.

Следовательно, центр

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

окружности - точка C

середина AB , т.е. координаты центра окружности

 

C(- 2,5; - 6) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ведь xC

 

=

 

xA + xB

,

yC =

y A + yB

, а радиус окружности

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

×13 = 6,5 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R =

 

AB

 

 

=

 

(- 5)2 + (-12)2

 

Уравнение окружности по 2

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2,5)2 + (y + 6)2 = 6,52 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: (x + 2,5)2 + (y + 6)2 = 6,52 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 6.

 

 

 

 

 

Окружность

 

задана уравнением

 

x2 + y 2 - 6x +14 y - 6 = 0 .

Составить

 

уравнение

ее

диаметра,

перпендикулярного хорде x − 2 y − 2 = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Диаметр AB проходит через центр окружности C .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x

 

- 6x + 9)+

(y

 

-14 y + 49)= 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приведем уравнение окружности к каноническому виду 2

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

или (x - 3)2 + (y + 7)2 = 82 , откуда C (3, 7). По условию задачи диаметр AB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

перпендикулярен данной прямой x − 2 y − 2 = 0 , значит, по условию перпендикулярности

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

двух прямых

k1 × k2

= -1 , получим k AB = -2 , т.к. угловой коэффициент данной

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

прямой k2 =

1

. Итак, прямая AB : y - y0 = k AB (x - x0 ), или (y + 7) = -2(x - 3) , или 2x + y + 1 = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

 

2x + y + 1 = 0 .

 

 

 

 

 

 

Задача 7. Написать каноническое уравнение эллипса, у которого расстояние от одного из фокусов до концов

большой оси равно 5 и 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

Общий вид канонического уравнения эллипса

3 :

 

 

 

x2

 

+

y 2

= 1 ,

где a = 0 A1 = 0 A2 – большая полуось

 

 

 

 

 

 

 

 

a 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b2

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

эллипса, а b = 0B1 =

0B2 - малая полуось эллипса. Найдем их. По

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

условию задачи A1 F1 = 1, A2 F1 = 5 , следовательно, A1 A2 = 6 или

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1 (0,

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a = 6 ,

a = 3 ,

F1F2

= 2c = 5 -1 = 4 –

фокусное расстояние эллипса,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

откуда c = 2 –

полуфокусное расстояние. Зависимость

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

между параметрами

 

 

a ,

b , c у эллипса:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 (− 2, 0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2 (2, 0)

 

 

x

a 2 = b2 + c2 b2 = a 2 - c2 = 9 - 4 = 5 . Таким образом, каноническое

 

0

 

 

 

 

 

 

 

 

F2 (1, 0)

 

 

 

 

 

 

F1 (− 1, 0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

уравнение эллипса:

 

 

x2

+

y 2

 

= 1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B2 (0, −

3 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

x2

 

+

y 2

= 1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 8. Найти полуоси, координаты вершин, фокусов, эксцентриситет эллипса 3x2 + 4 y 2 -12 = 0 . Построить его.

21

 

Решение.

 

 

 

 

 

 

 

 

x2

+

y 2

= 1 или

x2

 

+

y 2

= 1 , откуда a = 2 ; b =

 

 

 

 

 

Приведем уравнение эллипса к каноническому виду

 

3 ,

 

a 2

b2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

3

 

 

 

 

 

 

 

 

 

 

 

 

a2 = b2 + c2 , то c =

 

 

=

 

 

 

= 1 . Таким образом:

A (− 2, 0);

A (2, 0) ;

B (0,

 

); B

 

(0, −

 

);

 

 

a2 b2

 

т.к.

для эллипса

 

4 − 3

3

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

1

 

 

 

 

 

 

 

F (−1, 0) ; F (1, 0) . Эксцентриситет эллипса ε =

c

 

=

1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

a

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 9.

Привести уравнение кривой к каноническому виду: 8x2 + 3 y 2 −16x

найти ее эксцентриситет.

 

 

 

Решение.

Выделим в уравнении кривой полные квадраты по

x и y : 8(x2 − 2x +1)+ 3(y 2 + 4 y + 4)= 8 + 12 + 4 или

(x −1)2

+

(y + 2)2

= 1 . Из уравнения

 

 

 

3

8

 

x видно, что центр симметрии эллипса (данной кривой) находится в точке C (1, − 2) ;

a =

 

- малая и b =

 

– большая полуоси эллипса, c =

 

=

 

; ε =

c

=

 

5

 

.

 

 

b2 a 2

3

8

5

 

 

 

 

 

 

 

 

 

 

 

 

 

b

8

 

 

Ответ: ε = 1 . 2

+12 y − 4 = 0 . Построить эту кривую,

y

 

 

B1

 

 

F1

 

x

 

0

A

C( 2 , −2 ) A

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F2

 

 

 

 

 

 

 

 

 

Ответ: ε =

 

 

5

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B2

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

Задача 10. Дана гипербола

x2

y 2

= 1 . Найти координаты ее вершин,

фокусов,

эксцентриситет и уравнения

 

 

9

1

 

 

 

 

 

 

 

 

 

 

 

 

асимптот этой гиперболы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Каноническое уравнение гиперболы

x2

y 2

= 1 4

, следовательно, для данной гиперболы a = 3 , b = 1 .

a 2

b2

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Зависимость между параметрами гиперболы: c2 = a 2 + b2

4

 

 

 

 

 

 

 

 

 

 

c = a 2 + b2 , c = 9 +1 = 10 . Значит, A1 (− 3, 0) ; A2 (3, 0);

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1 (0,1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B (0, 1); B

 

(0, −1);

F (− 10, 0);

F ( 10, 0); ε =

c

 

=

 

 

10

; асимптоты:

A (− 3, 0)

 

A (3, 0)

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

2

 

 

 

 

 

 

a

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = ±

b

x или y = ±

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F1 (− 10 , 0)

 

0

 

 

F2 ( 10 , 0)

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x . (Ответ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B2 (0, − 1)

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 11. Привести уравнение кривой к каноническому виду и построить ее:

x2 − 2 y 2 + 2x + 12 y − 33 = 0 .

 

 

 

 

Решение.

 

Приведем

уравнение к

 

каноническому виду,

выделив

полные

квадраты

по

 

x и

y :

(x2 + 2x + 1)− 2(y 2 − 6 y + 9)= 33 + 1−18 или

(x + 1)2

 

(y − 3)2

 

4 , из уравнения

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

следует, что центр симметрии кривой C(−1, 3), a = 4

 

- действительная,

 

 

 

 

 

 

B1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1

 

 

 

 

A2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b =

8 - мнимая полуоси гиперболы;

c = a 2 + b2

=

16 + 8 = 2 6 -

 

 

 

B

 

 

 

 

 

 

 

 

 

F

 

 

F2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

C2

 

 

 

 

 

 

полуфокусное расстояние гиперболы

4 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−1

0

 

 

 

 

Задача 12. Привести уравнение кривой y = 3x2 −12x + 9 к каноническому виду, построить кривую

.

 

y

 

 

 

 

 

 

 

 

Решение. Преобразуем данное уравнение. Выделив по x полный квадрат:

 

 

 

 

 

 

 

 

 

 

 

y = 3(x2 − 4x + 4)−12 + 9 или (x − 2)2 =

1

(y + 3) - это каноническое уравнение параболы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x a)2 = 2 p(y b)

5 . Из этого уравнения видно, что вершина параболы -

C(2, − 3), ось

 

 

 

0

C (2,

− 3 )

x

симметрии параллельна оси 0 y .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

Задача 13. Камень, брошенный под острым углом к горизонту, описал дугу параболы и упал на расстоянии 16 м от начального положения. Определить параметр параболической траектории, зная, что наибольшая высота, достигнутая камнем, равна 12 м. y

Решение. Выберем систему таким образом, чтобы можно было задать параболу

каноническим

5

 

уравнением вида x2 = -2 py . Из условий задачи видно, что в этой

 

 

 

системе координат координаты точек A(- 8, -12) , B(8, -12) , т.к. AB = 16 , OK = 12 .

 

0

 

Подставим координаты одной из них в уравнение параболы: (- 8)2 = -2 p(-12) ,

 

 

 

отсюда p =

64

=

8

= 2

2

.

A

K

B

 

 

 

24

3

3

 

 

 

 

Ответ:

Задача 14. Струя воды, выбрасываемая фонтаном, принимает форму параболы, параметр которого равен

x

p = 2 2 . 3

p = 0,1 .

Определить высоту струи, если известно, что она падает в бассейн на расстоянии 2 м от места выхода.

Решение. Решая эту задачу, можно воспользоваться рисунком предыдущей задачи и уравнением параболы x2 = -2 py . По условию задачи известно, что p = 0,1 м, AB = 2 , следовательно, A(-1, y), B(1, y),. Подставим в уравнение параболы данный параметр и координаты точки, через которую проходит парабола, например A(-1, y): (-1)2 = -2 × 0,1× y ,

откуда y = −5 . Это ордината точек A и B , а также и высота параболы h , следовательно, h = OK = 5 .

Ответ: h = 5

3.3 Кривые в полярной системе координат

Полярная система координат задается на плоскости точкой O – полюсом и лучом Oρ – полярной осью.

 

M (ρ , ϕ )

 

Положение точки

M относительно полярной системы координат определяют ее

 

 

 

 

 

полярные координаты:

ρ

- полярный радиус, равный расстоянию точки M от полюса O ,

ρ

 

т.е. ρ = OM , и ϕ - полярный

угол,

который образует

полярный радиус с полярной осью.

ϕ

 

Пишут: M (ρ, ϕ ) , где −∞ < ρ < ∞ , 0 ≤ ϕ < 2π .

 

 

 

0

 

ρ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Связь между декартовыми и полярными координатами точки M . Если

полюс полярной системы координат

совместить с началом координат декартовой системы,

а полярную ось направить по оси 0x , то между декартовыми и

полярными координатами одной и той же точки M (x,

y) M (ρ, ϕ )

 

легко обнаружить следующую зависимость, которую

иллюстрирует рисунок:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

M

 

x =

ρ cosϕ

 

 

ρ

2

= x

2

+ y

2

 

 

 

 

 

 

Û

 

 

 

 

 

 

 

ρ

 

 

 

ρ sin ϕ

ϕ = arctg

y

 

 

 

 

y

 

y =

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ

 

x, ρ

Замечание: Чтобы правильно выбрать угол, имеющий тангенс, равный

y

, следует

 

 

0 0

x

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

иметь в виду положение точки относительно декартовой системы координат.

 

 

 

Приведем примеры некоторых кривых на плоскости, заданных в полярной системе координат.

y

 

1. Окружность

y

y

 

 

2R

 

 

 

 

 

M (ρ , ϕ )

 

 

M (ρ , ϕ )

 

 

 

M (ρ , ϕ )

 

 

 

R

M (ρ , ϕ )

 

 

 

 

 

ρ

 

 

 

ρ

 

 

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

ϕ

 

 

 

 

 

 

x, ρ

 

 

 

x, ρ

 

 

ϕ

x, ρ

0

0

0

0

 

 

 

 

0

0

 

 

 

 

 

 

R

 

2R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 + y 2 = R 2

 

(x - R)2 + y 2 = R 2

 

 

x2 + (y - R)2 = R 2

 

 

 

 

 

или ρ = R .

 

или ρ = 2R cos ϕ .

 

 

или ρ = 2R sin ϕ .

 

23

2. Спираль Архимеда ρ = aϕ .

0

a

ρ

 

 

2a

0

ρ

 

а) ρ = a(1− cosϕ ) ;

ρ

0

в) ρ = a(1 − sin ϕ ) ;

0

a

ρ ρ = a cos 3ϕ

a

ρ ρ = a sin 3ϕ

0

трехлепестковые

3. Лемниската Бернулли ρ 2 = a2 cos 2ϕ .

 

 

π

 

 

4

0

 

ρ

 

 

π

4. Кардиоида

 

 

4

0

2a

ρ

 

б) ρ = a(1+ cosϕ );

2a

0

ρ

 

г) ρ = a(1 + sin ϕ ) .

5. Розы

ρ ρ = a cos 2ϕ

a

a

ρ ρ = a sin 2ϕ

четырехлепестковые

3.4 Параметрический способ задания кривых на плоскости

Некоторые кривые на плоскости удобно задавать уравнениями вида

x = x(t )

,

где зависимость между функцией y

 

 

 

 

y = y(t )

 

 

и аргументом x устанавливается через посредство параметра (промежуточной переменной) t , причем − ∞ < t < ∞ .

1. Параметрические уравнения прямой l:

 

 

 

x = x0

+ mt

R

 

t

- параметр.

 

, где M 0 (x0 , y0 ) l ; s = {m; n} - направляющий вектор прямой l ,

y = y0

+ nt

 

 

 

 

2. Окружность: x = R cos t ; y = R sin t .

 

 

 

3. Эллипс: x = a cos x ;

y = b sin t .

 

 

 

3. Циклоида: - это линия, которую описывает неподвижная точка на окружности, в то время, как окружность без

скольжения катится по оси 0x . y

 

C

2a

M

t a

 

 

a

0

 

x = a(t − sin t )= ( )y a 1 cos t

x

24

4. Астроида:

y

x = a cos3 ty = a sin 3 t

0

x

3.5 Плоскость в пространстве

1 F (x, y, z) = 0 -поверхность.

2

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

(α )

:

Ax + By + Cz + D = 0

- плоскость, где

N = {A, B, C} (α )

- нормаль

R(α )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(α )

 

 

 

 

 

 

 

 

 

 

R

{0, B, C}

 

 

 

:

Ax + By + Cz + D = 0

 

 

 

 

 

 

 

 

N

 

 

 

D = 0 (0, 0, 0) (α )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(α )

 

 

 

 

 

 

 

 

 

 

 

 

 

Плоскость

проходит

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Через начало координат

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

7

 

 

 

 

:

 

 

 

 

 

 

 

 

 

z

 

 

 

 

(α )

By + Cz + D = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

N {0, B, C}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A = 0 N = (0, B,C )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(α )

||

 

OX

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Плоскость

(α )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

параллельна

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

оси

OX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By + Cz + D = 0

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ax + By = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

= D = 0

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

{A, B,O}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N =

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0,0,0) (α )

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N {A, B, 0}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(α )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

||

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OZ

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Плоскость проходит

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ax

+ By = 0

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

через ось

OZ

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

Уравнение

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 1 {0 , 0 , c}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

плоскости в отрезках

 

 

 

 

 

 

 

 

 

 

 

на осях:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N {A, B , C}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

x

+

 

 

y

+

z

= 1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1 {0, b , 0

}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

a

 

 

 

b

 

 

c

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 {a , 0, 0}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

Уравнение плоскости, проходящей

 

 

 

 

 

 

 

 

 

 

 

 

через точку

M (x0 ,

y0 , z0 )

 

 

 

 

 

 

 

 

 

 

 

 

перпендикулярно данному вектору

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

{A, B,C}:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N =

 

 

 

A(x x0 )+ B(y y0 )+ C(z z0 ) = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Координатные

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

плоскости

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

z = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

Расстояние от точки

 

M (x

0

,

 

y

0

, z

0

)

 

 

 

 

до плоскости

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(α )

 

 

 

Ax + By + Cz + D = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d =

 

Ax0 + By0 + Cz0 + D

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2 + B 2 + C 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

Уравнение

плоскости,

 

 

 

 

проходящей

 

 

 

три данные

 

точки:

 

M1 (x1 , y1 , z1 );

через

 

 

 

M 2 (x2 , y2 , z2 ) и M 3 (x3 , y3 , z3 ):

 

x x1

y y1

z z1

 

 

 

 

 

 

 

x2 x1

y2 y1

z2 z1

 

 

.

 

x3 x1

y3 y1

z3 z1

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

(α )1

 

A1 x + B1 y + C1 z + D1 = 0

(α )2

A2 x + B2 y + C2 z + D2 = 0

.

 

 

 

 

Угол между двумя плоскостями:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

 

 

 

 

 

 

A A + B B + C C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R R

 

 

 

 

 

N N

 

 

 

 

 

 

 

 

 

 

 

 

 

cosϕ = cos(α1 α 2 )= cos(N1 N

2 )=

 

1

2

 

 

 

=

 

 

 

 

1

2

1

2

1 2

 

 

 

 

 

 

 

 

R

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N1

 

N 2

 

 

 

 

A 2

+ B 2

+ C

2

 

A

2 + B

2

+ C

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

1

 

 

2

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

R

 

 

 

 

 

 

 

+ C1C2

= 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(α1 ) (α 2 ) N1

N 2 A1 A2 + B1 B2

-условие перпендикулярности двух плоскостей,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

R

 

 

B1

 

 

C1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(α1 )

||

(α

2 )

N1

||

 

N2

A1

 

+

+

 

- условие параллельности двух плоскостей.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2

 

 

B2

C2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

Задачи по теме «Плоскость в пространстве»

Задача1. Составить уравнение плоскости (α ) , параллельной плоскости XOZ и проходящей через точку M (2, - 5, 3).

Решение.

Искомая плоскость

(α )

параллельна координатной плоскости XOZ , значит,

параллельна осям OX и

OZ . Следовательно, в общем уравнении (α ) A = 0 , C = 0

7 , т.е. оно имеет вид By + D = 0 , где B ¹ 0 ,

D ¹ 0 . Найдем B и

D . Так как точка M Î (α ), то ее координаты должны удовлетворять уравнение (α ) : B(- 5)+ D = 0 D = 5B , подставив D в

уравнение (α )

и сократив на B , получим By + 5B = 0 или y + 5 = 0 (α ) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: (α )

y + 5 = 0 .

Задача 2. Составить уравнение плоскости (α ) , проходящей через ось OZ и через точку M (- 3, 1, - 2).

 

 

 

Решение.

Плоскость (α ) , проходящая через ось OZ , проходит через начало координат параллельно оси OZ ,

значит, в общем уравнении (α ) D = 0 ,

 

C = 0 , т.е. оно имеет вид

Ax + By = 0 ,

где A ¹ 0 , B ¹ 0

 

3 и

7 . Так как точка

M Î (α ), то ее координаты должны удовлетворять уравнение (α ) :

A(- 3)+ B ×1 = 0 B = 3A . Подставим B в уравнение (α )

и сократим на A : Ax + 3Ay = 0 , получим x + 3y = 0 - уравнение (α ) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: (α ) x + 3y = 0 .

Задача 3. Найти объем пирамиды, отсекаемой плоскостью 2x - 3y + z -12 = 0 от координатного угла.

 

 

 

Решение.

Приведем уравнение данной плоскости к виду «уравнение в отрезках

 

 

 

 

 

 

 

z

 

 

 

на осях» 5

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C (0, 0,12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

y

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

x

 

 

y

 

 

 

z

= 1 . Откуда a = 6 , b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

+

 

= 1 2x - 3y + z -12 =

0 или

 

+

 

 

+

 

 

= -4 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

b

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c = 12 – отрезки, отсекаемые плоскостью от осей координат, совпадающие с

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ребрами пирамиды OABC . Так как они взаимно перпендикулярны, то

B(0, − 4,0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

 

a ×b × c

 

=

1

6 × 4 ×12 = 48 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A(6, 0,0)

 

 

 

 

0

 

 

 

 

y

Vпир

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

Ответ: Vпир = 48 куб.ед.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 4.

Составить уравнение плоскости

 

 

(α ), проходящей через точку

M (- 2, 7,3)

параллельно плоскости

x − 4 y + 5z −1 = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

R

 

 

 

 

 

 

 

 

 

 

Если две плоскости параллельны,

то их нормали тоже параллельны 11 , N

1

|| N

2

. Поэтому в качестве

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

{1, - 4, 5}. Уравнение плоскости, проходящей

нормали к искомой плоскости можно взять нормаль к данной плоскости

N1 =

через данную точку M (x0 , y0 , z0 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

= {A, B,C}:

A(x - x0 )+ B(y - y0 )+ C(z - z0 ) = 0 6 ,

перпендикулярно данному вектору

N1

следовательно, искомая плоскость: 1(x + 2)- 4(y - 7)+ 5(z - 3) = 0 или x − 4 y + 5z + 15 = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: (α )

x − 4 y + 5z + 15 = 0 .

Задача 5.

Даны две точки:

P(1, 3, - 2) и

Q(7, - 4, 4) . Через точку

Q провести плоскость,

перпендикулярную

отрезку PQ . Найти направляющие косинусы нормали к плоскости.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

Воспользуемся

уравнением

плоскости, проходящей

через

данную точку перпендикулярно

данному

вектору A(x - x0 )+ B(y - y0 )+ C(z - z0 ) = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

{A, B,C}: вектор PQ = {6, - 7, 6}. Тогда уравнение

 

 

 

6 . Примем за нормаль N1

=

плоскости:

 

 

6(x - 7)- 7(y + 4)+ 6(z - 4) = 0

 

 

или

 

6x − 7 y + 6z − 94 = 0 .

Чтобы

найти

направляющие

косинусы

вектора

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

62 + (- 7)2 + 62 = 11 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N = {6, - 7, 6}, найдем его орт: N 0

=

 

;

 

N

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

7

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

7

 

 

 

 

 

 

6

 

 

 

 

 

 

 

Следовательно: N 0 =

6

, -

,

 

 

= {cosα , cos β , cosγ } или cosα =

; cos β = -

; cosγ =

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

11

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

11

 

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

6x − 7 y + 6z − 94 = 0 ; cosα =

6

; cos β = -

7

; cosγ =

6

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

11

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 6.

Найти объем куба, если

грани

его лежат на

плоскостях

(α1 )

11x − 2 y −10z +15 = 0

и (α 2 )

11x − 2 y −10z − 45 = 0 .

 

 

 

 

 

 

Решение.

Объем куба V = a3 , где a

длина

ребер куба.

Ребро куба

равно

расстоянию между

данными

плоскостями, т. к. эти плоскости параллельны (коэффициенты при переменных пропорциональны), значит, на этих плоскостях лежат противоположные грани куба. Чтобы найти расстояние между двумя плоскостями, воспользуемся

формулой

 

d =

 

 

Ax0 + By0 + Cz0 + D

 

 

9 . Для этого на одной из плоскостей выберем произвольную точку, например

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2 + B2 + C 2

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

- 45

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

11× 0 - 2 × 0 -10 ×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Îα1 , и найдем расстояние от нее до второй плоскостиα

 

 

2

 

 

 

 

 

 

M

0, 0,

 

 

 

2 : d =

 

 

 

 

 

 

 

 

=

 

= 4 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

112 + (- 2)2 + (-10)2

 

 

 

 

15

 

 

Итак, a = d = 4 Vкуб

= a3

 

= 43 = 64 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: Vкуб

= 64 .

 

Задача

7.

 

 

Найти

точку пересечения

данных плоскостей:

 

5x + 8y z − 7 = 0

 

(α1 ),

 

x + 2 y + 3z −1 = 0

(α 2 ),

2x − 3y + 2z − 9 = 0 (α 3 ) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

Чтобы найти точку пересечения трех плоскостей, т. е. общую точку этих трех плоскостей, достаточно

 

 

 

 

 

 

 

 

 

 

 

 

x + 2 y + 3z = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

решить систему их уравнений:

 

 

 

 

 

 

= 7 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5x + 8y - z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 3y + 2z = 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Используем метод Гаусса:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-5

1 2

 

3

 

1

 

1

2

 

3

 

1

 

1 2

3

 

 

 

1

 

 

1

2

3

 

1

 

x + 2 y + 3z = 1 x = 1 - 2 y - 3z = 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1

 

 

 

 

- 2 -16

 

 

 

 

 

-1

- 8

 

 

 

 

 

-7

 

-1 - 8

 

 

 

 

 

 

 

 

- y - 8z = 1 y = -1

 

-2 5 8

 

7 ~

0

 

2 ~ 0

 

 

1

 

 

~ 0

 

1

 

 

 

 

 

 

 

 

- 3

 

2

 

9

 

 

- 7 - 4

 

 

 

 

 

- 7

- 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52z = 0 z = 0.

 

 

 

2

 

 

 

0

 

7

 

0

 

 

7

 

 

0

0 52

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: M (3, -1, 0) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 8.

Найти угол между плоскостью x - y +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

z - 5 = 0 и плоскостью YOZ .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

R

 

 

 

 

 

 

 

 

 

 

Решение.

 

Угол между двумя плоскостями можно найти по формуле

cosϕ =

 

N1 N

2

 

 

9

; нормаль к первой

 

 

 

R

×

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N1

N

2

 

 

 

 

 

 

 

 

R

{1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

= {1, 0, 0}.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

плоскости

N1 =

-1,

 

2}; уравнение второй плоскости YOZ x = 0 N 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 A2 + B1B2 + C1C2

 

 

 

 

 

 

 

 

 

 

1×1+ (-1)×0 +

 

×0

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

Вычислим cosϕ =

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

1

1

, т. е. ϕ =

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

=

 

 

 

 

 

=

 

3 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 + (-1)2 + (

 

)2

 

 

 

 

 

 

2

 

 

 

A1

2 + B1

2 + C1

2 ×

 

A2

2 + B2

2 + C2

2

 

 

 

 

 

 

4

 

 

 

 

 

12 + 02 + 02 ×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: ϕ = π .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

Задача 9.

 

 

Найти длину высоты пирамиды

SABC ,

опущенной из вершины S

на грань

 

ABC , если

S(1, 4, - 2) ,

A(0, -1, 1), B(3, 5, 1) , C(1, - 3, -1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

Длина высоты

SO – это длина перпендикуляра, опущенного из вершины

S

пирамиды на плоскость ее

основания, с помощью которого измеряется расстояние от точки

S до плоскости основания

ABC .

Составим уравнение

плоскости ABC , проходящей через три данные точки A ,

B и C , для этого воспользуемся уравнением 10 :

 

 

x - x1 x2 - x1 x3 - x1

y - y1 y2 - y1 y3 - y1

z - z1

 

 

 

x - 0 y +1 z -1

 

 

 

x y +1 z -1

 

= 0 ;

 

 

 

 

 

z2 - z1

 

= 0 ;

 

3 - 0 5 +1 1-1

 

= 0 ;

 

3

6

0

 

z3 - z1

 

 

 

1- 0 - 3 +1 -1-1

 

 

 

1

- 2 - 2

 

 

-12x + 6(y +1)-12(z -1) = 0 12x − 6 y + 12z −18 = 0 или 2x y + 2z − 3 = 0 -

уравнение плоскости основания пирамиды.

Расстояние d

(высота SO ) можно

найти по

формуле расстояния от точки до плоскости

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SO = d =

 

 

Ax0 + By0 + Cz0 + D

 

 

=

 

 

2 ×1

-1× 4 + 2 ×(- 2)- 3

 

 

=

9

= 3 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2 + B2 + C 2

22 + (-1)2 + 22

 

 

 

 

3

 

Ответ: SO = 3 .

27

 

Задача 10.

Найти уравнение плоскости

(α ) ,

проходящей

через точку

M 0 (2, − 3, 1)

параллельно

векторам

R

= {− 3, 2, −1} и b = {1, 2, 3}.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

Уравнение плоскости,

проходящей

через

 

данную

точку

перпендикулярно

данному

вектору

A(x x0 )+ B(y y0 )+ C(z z0 ) = 0 : 11 ,

точка

M 0 (x0 , y0 , z0 ) задана в

условии задачи; в качестве

нормального

вектора

N1 = {A, B,C}можно

взять векторное

произведение

векторов

R

и

b ,

которые

параллельны

плоскости

(α ) , т. к.

a

 

 

 

 

 

 

 

 

 

 

 

 

R

R

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

× b

 

 

R

R

 

 

 

 

 

 

 

 

 

 

N = a

 

 

c

= a × b будет перпендикулярен искомой плоскости (α ) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

R

 

 

 

 

R

 

 

R

 

i

j

k

R

R

R

= {8, 8, − 8} 9

R

R

=

− 3

2

−1

N = c

= a

× b

= 8i

+ 8 j

− 8k

 

 

 

 

 

1

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Уравнение (α ): 8(x − 2)+ 8(y + 3)− 8(z −1) = 0 , сократив на 8, получим

(x − 2)+ (y + 3)(z −1) .

Ответ: x + y z + 2 = 0 .

 

R

 

b

R

 

a

 

M 0 (2, − 3,1)

α

 

3.6 Прямая в пространстве

 

 

 

 

 

 

 

1

 

 

F (x, y, z) = 0 − поверхность

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F1 (x, y, z) = 0 − поверхность

 

- линия пересечения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 x + B1 y + C1 z

+ D1

= 0 − плоскость

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

l

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- прямая

 

R

 

 

S

 

 

 

 

 

 

A2 x + B2 y + C2 z

+ D2

 

= 0 − плоскость

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

Это общие уравнения прямой

l

;

 

 

 

 

 

 

 

 

 

 

 

R

= (A1 , B1 , C1 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

 

- нормаль к пл. α1 ,

 

 

 

 

 

 

N1

α

 

R

2.

 

R

= (A2 , B2 ,C2 )

- нормаль к пл. α 2 ,

1

 

N2

 

N1

 

 

 

 

 

 

A1

x + B1 y + C1 z + z1

+ λ(A2 x + B2 y + C2 z + D2 ) = 0

-

 

 

 

α2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

уравнение пучка плоскостей, проходящих через прямую

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Каноническое уравнение прямой l :

 

 

:

 

x x0

=

y y0

=

z z0

 

, где

 

 

 

 

,

 

l

M

0 (x0 , y0 , z0 ) l

 

 

m

 

n

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= {m, n, p}

- направляющий вектор прямой

l

|| l .

s

: s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

l

S

M (x, y, z )

M 0 (x0 , y0 , z0 )

4 Уравнение прямой l , проходящей через

две данные точки M1 (x1 , y1 , z1 ) и M 2 (x2 , y2 , z2 ) . Направляющий вектор прямой

R

= M1M 2

= {x2 x1 , y2 y1 , z2 z1}= {m, n, p}.

S

Через любую из данных точек проводим прямую:

x x1 = y y1 = z z1 x2 x1 y2 y1 z2 z1

l

M 2 (x2 , y2 , z2 )

R

S

M 1 (x1 , y1 , z1 )

5

Общие уравнения прямой

 

 

 

:

(α1 )

A1 x + B1 y + C1 z + D1 = 0

привести к каноническому виду:

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(α

2

) A x + B y + C

2

z + D = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x x0

=

y y0

=

z z0

 

 

выберем любую точку

 

 

, подобрав x0 ,

 

 

. На прямой

l

 

 

M 0 (x0 , y0 , z0 )

y0 , z0 ,

 

 

 

 

m

n

 

p

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

удовлетворяющие систему

уравнений

 

l

Направляющим вектором S может

служить

 

 

R

R

R

R

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

вектор S

= N1 × N 2 , т.к.

N 2 и

N1

перпендикулярны прямой

l

2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

 

 

 

 

 

 

6Иногда удобно пользоваться параметрическими уравнениями прямой:

x= x0 + mt

 

 

 

 

 

x - x0

 

=

 

y - y0

=

 

 

z - z0

 

= t

 

или

 

y = y0 + nt ; где t

- параметр,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z = z0 + pt .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

Угол между двумя прямыми

 

 

 

 

и

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l1

 

 

l2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

 

x - x1

=

y - y1

=

z - z1

 

;

 

 

 

 

 

 

 

 

 

x - x2

 

 

 

 

=

 

y - y2

 

=

z - z2

 

 

 

 

- это угол между их направляющими

 

 

 

l1

 

l2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1

 

 

 

 

 

 

 

 

n1

 

 

 

 

 

p1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m2

 

 

 

 

 

 

 

 

n2

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= {m2

, n2 , p2 }

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

векторами

 

s1 = {m1 , n1 , p1}

и

 

s2

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

×

R

 

 

 

 

 

 

 

 

 

 

 

 

 

m1m2 + n1n2 + p1 p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

R

 

 

 

 

 

 

 

S1

S2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cosϕ = cos(l1 l2 )= cos(S1 S2 )=

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1

 

S2

 

 

 

 

 

 

 

 

m12 + n12 + p12

 

 

 

m2 2 + n2 2 + p2 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

R

 

 

 

 

 

m1

 

n1

 

 

p1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Условие параллельности двух прямых:

l1 || l2

S1 || S2

 

 

 

=

=

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m2 n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Условие перпендикулярности двух прямых:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

R

 

 

 

 

 

 

 

 

R

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l1 ^ l2 S1

^ S 2

 

 

S1 × S 2 = 0 m1m 2 +n1n 2 + p1 p 2 = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

Дано :

(α )

:

Ax + By + Cz + D = 0

- плоскость,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x - x0

 

 

 

 

 

y - y0

 

 

 

 

 

z - z0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

l

:

 

 

 

 

m

 

=

 

 

n

=

 

p

 

 

 

- прямая. Угол между прямой

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

π

−ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и плоскостью

(α )

 

- это угол

 

 

 

 

между прямой

l

и

 

l

ее проекцией

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= {A, B, C}

 

 

 

 

= {m, n, p}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

на плоскость. Векторы

N

 

и

S

образуют угол

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Am + Bn + Cp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

R

 

 

N × S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-ϕ

,

значит,

sin ϕ = cos

 

 

-ϕ

 

= cos(N

S )=

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

2

 

 

 

R

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

S

 

 

 

 

A2 + B 2 + C 2

 

m 2 + n 2 + p 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

Условие параллельности прямой и плоскости:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

R

 

 

R

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l1 // α N ^ S N × S = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Am + Bn + Cp = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

Условие перпендикулярности прямой и плоскости:

 

 

 

 

 

 

 

R

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l1 ^ α N || S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A = B = C . m n p

α

l

Задачи по теме «Прямая и плоскость в пространстве»

 

 

 

 

Задача 1. Составить уравнение прямой l , проходящей через точку

 

 

 

 

 

 

 

 

M 0 (1, - 2, 2) параллельно оси 0 y .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. В канонических уравнениях

прямой

 

x - x0

=

y - y0

=

z - z0

3 точка M 0 (x0 ,

y0 , z0 )Îl , а вектор

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

m

n

 

 

 

 

R

= {m, n, p}

направляющий вектор прямой.

 

 

 

 

 

 

 

 

 

 

0 y , следовательно,

 

S

По условию задачи

прямая

параллельна оси

направляющим вектором прямой может служить орт оси

0 y вектор

R

= {0,1,0}. Итак, канонические уравнения прямой l

j

 

x -1

=

y + 2

=

z - 2

. Приравнивая попарно отношения, получим общие уравнения ее (l ) x = 1 .

 

 

 

 

 

 

 

 

0

1

 

0

 

 

 

 

 

 

 

 

 

 

z = 2

 

 

 

 

 

 

 

 

 

 

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z = 2

 

 

Задача

2.

 

 

Даны

координаты вершин треугольника

A(2, 3, -1) ;

B(1, - 2, 0) ;

 

C(- 3, 2, 2) .

Составить уравнения

медианы AM и найти ее длину.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а) Найдем координаты точки M

середины отрезка BC по формулам:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xM =

xB + xC

=

 

1- 3

 

= -1 ; yM =

yB + yC

=

- 2 + 2

= 0 ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zM =

zB + zC

=

2 + 0

= 1 , т.е. M (-1, 0, 1) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Через точки A и M проведем прямую AM , используя уравнения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x - x1

=

 

 

y - y1

=

z - z1

 

или

 

x - 2

=

y - 3

=

z +1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 - x1

 

 

y2 - y1

z2 - z1

 

- 3

 

 

 

 

- 3

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

б) Длину медианы AM можно найти по формуле расстояния между двумя точками:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x2 - x1 )2 + (y2 - y1 )2 + (z2 - z1 )2

(2 +1)2 + (3 - 0)2 + (-1 -1)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AM =

=

 

=

22

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: 1) AM :

 

x - 2

=

 

y - 3

=

 

z +1

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 3

 

- 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) AM =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 .

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 3. Через точку M 0 (1, - 3, 5) провести прямую l , параллельную прямой l1

 

3x - y + 2z - 7 = 0

 

 

 

 

 

 

 

 

 

 

 

 

:

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x + 3y - 2z + 3

= 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

параллельны, то за направляющий вектор искомой прямой

R

 

 

 

 

 

 

 

 

 

 

 

 

Так как прямые l

и

l1

 

 

S можно принять

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

направляющий вектор данной прямой

 

S1 ,

который можно найти как векторное произведение нормалей к плоскостям, при

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

{3, -1, 2}

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

пересечении которых образуется данная прямая l :

N1

=

 

и N2 = {1, 3, - 2}.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

R

 

 

R

 

R

i

j

 

 

 

k

 

 

 

 

 

 

 

 

R

 

R

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Итак, S

= S1

 

= N1 ´ N2 =

3

-1

 

 

2

 

 

= -4i + 8 j

+

10k 5 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

3

- 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Канонические уравнения прямой l :

 

x -1

=

 

y + 3

=

z - 5

или

x -1

=

y + 3

=

z - 5

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

10

 

- 2

 

 

 

4

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: l :

x -1

=

y + 3

=

z - 5

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

y -1

 

 

z

 

 

 

 

3x + y - 5z +1 = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 4. Доказать, что прямыеl1

:

 

 

=

=

 

 

и l2 :

 

 

 

 

 

 

 

 

: перпендикулярны.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

- 2

 

 

 

3

 

 

 

 

2x + 3y - 8z + 3 =

0

 

 

 

 

 

R

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Если прямые перпендикулярны,

то перпендикулярны их направляющие векторы S1 и S2 7

. Из условий

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

задачи ясно, что

S1 = {1, - 2, 3}, а направляющий вектор второй прямой

S2

 

можно найти как векторное произведение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

R

- 8}. Таким образом,

нормалей плоскостей, заданных в общих уравнениях прямой

l2 , т. е. N1 = {3, 1, - 5}

 

и N2 = {2, 3,

 

 

 

 

 

 

 

R

 

 

 

R

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

 

R

 

i

 

 

 

j

 

 

k

= {7, 14, 7} 5 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S2

= N1

´ N 2 =

3

 

 

 

1

- 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

3

- 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

 

Скалярное

 

 

 

 

 

 

произведение

 

 

 

 

 

 

 

 

взаимно

 

 

 

перпендикулярных

 

векторов

 

 

 

равно

 

 

 

 

нулю:

 

 

 

 

 

 

 

 

 

+ z1 z2 = 1×7 + (- 2)×14 + 3×7 = 0 . Что и требовалось доказать.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1

× S2 = x1 x2 + y1 y2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача

5.

Найти

 

 

угол

между

 

прямой,

 

проходящей

через точки

 

A(2, 3, -1) и B(1, - 2, 0)

и плоскостью

α :

x − 3y + z + 5 = 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Угол между прямой и плоскостью можно найти по формуле

 

sin ϕ =

 

 

Am + Bn + Cp

 

 

8

 

 

, где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2 + B 2 + C 2

 

m2 + n2 + p 2

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

= {m, n, p}– направляющий вектор прямой AB .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

= {A, B, C} – нормаль к плоскости, а S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

Соседние файлы в предмете Высшая математика