- •Содержание
- •Введение
- •Глава 1. Методы упрочнения поверхностным пластическим деформированием
- •1.1. Вибрационные методы обработки в специальных средах
- •1.2. Дробеструйные методы обработки
- •1.3. Методы деформационного выглаживания
- •1.4. Ультразвуковая обработка
- •Список литературы к главе 1
- •Глава 2. Методы ионно-имплантационной обработки поверхностей деталей
- •С поверхностным слоем упрочняемого материала:
- •2.1. Низкоэнергетическая ионно-имплантационная обработка
- •2.1.1. Легирование вбиванием (легирование атомами отдачи)
- •2.1.2. Легирование ионами сверхмалых энергий
- •2.1.3. Глубокое проникновение по границам зерен. Стержнеобразные дефекты
- •2.1.4. Импульсный отжиг имплантационных слоев
- •2.1.5. Дефекты, возникающие при ионном легировании
- •Кроме этого, показано [20], что изменение дозы имплантируемого n от 1015 до 1018 см-2 приводит к экстремальному изменению -1 (рис. 2.6).
- •2.2. Высокоэнергетическая ионно-имплантационная обработка
- •2.3. Комбинированные методы обработки
- •Список литературы к главе 2
- •Глава 3. Методы нанесения защитных и специальных покрытий на лопатки турбомашин
- •3.1. Нанесение эрозионно- и коррозионностойких покрытий
- •Список литературы к п. 3.1
- •3.2. Нанесение жаростойких покрытий
- •3.2.1. Диффузионные покрытия
- •3.2.2. Конденсационные покрытия
- •3.2.3. Комбинированные покрытия
- •Список литературы к п. 3.2
- •3.3. Теплозащитные покрытия для лопаток турбин
- •Термобарьерные слои. Функцией термобарьерных покрытий является обеспечение термической изоляции лопатки. Покрытие около 200 мкм может снизить температуру лопатки более чем на 200c.
- •Список литературы к п. 3.3
- •3.4. Специальные конструкционные покрытия
- •Список литературы к п. 3.4
- •Список дополнительной литературы к п. 3.4
- •Глава 4. Специальное оборудование для обеспечения высокоэффективных технологий защитно-упрочняющей обработки поверхности деталей гтд
- •4.1. Оборудование для нанесения газотермических покрытий
- •4.1.1. Электродуговая металлизация
- •Для нанесения покрытий методом электродуговой металлизации используется: комплект оборудования электродуговой металлизации тсзп-ld/u2 300 или тсзп spark 400.
- •- Производительность при напылении цинка: 30 кг/ч;
- •4.1.2. Газопламенное напыление
- •Характеристики установки для газопламенного напыления тсзп-mdp-115 указаны в табл. 4.2.
- •Характеристики установки тсзп-mdp-115
- •Горелка glc-720 Характеристики горелки glc-720 для газопламенного напыления:
- •- Окислитель – кислород.
- •Горелка ak-07 Горелка (рис. 4.13) предназначена для газопламенного нанесения защитных покрытий различного состава.
- •Твердость – 1100 hv;
- •4.1.3. Плазменное напыление
- •Технические характеристики установки тсзп mf-p-1000:
- •Установка тсзп mf-p-1000 включает:
- •Система управления установкой (рис. 4.26) разработана на базе контроллера Simatic s7-300, смонтирована в пылезащищенном шкафу.
- •Холодильник vwk-270/1-s (рис. 4.30) Техническая характеристика:
- •Холодильник pc – 250 Холодильник рс-250 представлен на рис. 4.32.
- •Технические характеристики плазмотронов Плазмотрон f4 (рис. 4.33) Техническая характеристика плазмотрона f4:
- •Пистолет к-2. Технические характеристики:
- •Комплект оборудования для плазменной наплавки тсзп-pta-4
- •Перемещатели горелок
- •Список литературы к п. 4.1
- •4.2. Установки для нанесения покрытий методами конденсации в вакууме
- •2. Установка осаждения покрытий с вертикально-протяженным паровым потоком
- •С вертикально-протяженным паровым потоком
- •Список литературы к п. 4.2
- •4.3. Установки для комплексной ионно-плазменной и ионно-имплантационной обработки деталей
- •Список литературы к п. 4.3
- •4.4. Специальное технологическое оборудование для высокоэффективной обработки деталей
- •4.4.1. Катоды, использующие магнитные поля
- •4.4.2. Вакуумно-дуговые источники плазмы
- •4.4.3. Дополнительные устройства для улучшения качества работы вакуумных испарителей
- •Список литературы к п. 4.4
- •Заключение
4.1.3. Плазменное напыление
Плазменное напыление – процесс нанесения покрытия на поверхность детали (изделия) с помощью плазменной струи. Плазменная струя – это частично или полностью ионизированный газ, обладающий свойством электропроводности и имеющий высокую температуру.
Различают высоко- и низкотемпературную плазму. Первая практически ионизирована, и ее электронная температура оценивается в сотни тысяч и более градусов. Низкотемпературная плазма, с температурой в несколько тысяч или десятков тысяч градусов, ионизирована частично и содержит значительную часть нейтральных частиц.
Низкотемпературная плазма – многокомпонентная система, состоящая из атомов или молекул в основном состоянии; молекул, атомов, радикалов в различных возбужденных квантовых состояниях; ионов, электронов. Для нанесения плазменных покрытий применяется низкотемпературная плазма.
Сущность плазменного напыления заключается в том, что в высокотемпературную плазменную струю подается распыляемый материал, который нагревается, плавится и в виде двухфазного потока направляется на подложку. При ударе и деформации происходит взаимодействие частиц с поверхностью основы или напыляемым материалом и формирование покрытия. Плазменный процесс состоит из трех основных стадий:
1) генерация плазменной струи;
2) ввод распыляемого материала в плазменную струю, его нагрев и ускорение;
3) взаимодействие плазменной струи и расплавленных частиц с основанием. Плазменным напылением наносятся износостойкие, антифрикционные, жаро-, коррозионностойкие и др. покрытия.
Напыление с помощью низкотемпературной плазмы позволяет:
- наносить покрытия на листовые материалы, на конструкции больших размеров, изделий сложной формы;
- покрывать изделия из самых разнообразных материалов, включая материалы, не терпящие термообработки в печи (стекло, фарфор, дерево, ткань);
- обеспечивать равномерное покрытие, как на большой площади, так и на ограниченных участках больших изделий;
- значительно увеличивать размеры детали (восстановление и ремонт изношенных деталей). Этим методом можно наносить слои толщиной в несколько миллиметров;
- легко механизировать и автоматизировать процесс напыления;
- использовать различные материалы: металлы, сплавы, окислы, карбиды, нитриды, бориды, пластмассы и их различные комбинации;
- наносить их в несколько слоев, получая покрытия со специальными характеристиками;
- практически избежать деформации основы, на которую производится напыление;
- обеспечивать высокую производительность нанесения покрытия при относительно небольшой трудоемкости;
- улучшать качество покрытий. Они получаются более равномерными, стабильными, высокой плотности и с хорошим сцеплением с поверхностью детали.
К основным недостаткам метода нанесения покрытий напылением можно отнести высокий шум, ультрафиолетовое излучение, образование вредных для здоровья работающих соединений напыляемого материала с воздухом, которое сопровождает процесс напыления.
Принцип плазменного напыления (рис. 4.18). Между катодом и медным водоохлаждаемым соплом, служащим анодом, возникает дуга, нагревающая поступающий в сопло горелки рабочий газ, который истекает из сопла в виде плазменной струи. В качестве рабочего газа используют аргон или азот, к которым иногда добавляют водород. Порошковый наплавочный материал подается в сопло струёй транспортирующего инертного газа, нагревается плазмой и с ускорением переносится на поверхность основного материала для образования покрытия. Средняя температура плазмы на выходе из сопла плазмотрона находится в пределах от нескольких тысяч градусов до десятков тысяч градусов Кельвина.
Рис. 4.18. Схема процесса пламенного напыления:
П – покрытие; С – струя напыляемого материала и продуктов сгорания газов
Коэффициент полезного действия (КПД) плазменной горелки составляет от 50 до 70%. Высокая температура плазмы позволяет проводить напыление тугоплавких материалов. Возможность регулирования температуры и скорости плазменной струи путем выбора формы и диаметра сопла и режима напыления расширяет диапазон напыляемых материалов (металлы, керамика и органические материалы). Покрытия, полученные методом плазменного напыления, обладают высокой плотностью и хорошим сцеплением с основой. Процесс плазменного напыления хорошо поддается автоматизации.
Краткие характеристики покрытия:
- пористость покрытия, % – 4–8;
- прочность сцепления покрытия с основой, кг/ мм² – 5,0–8,0;
- толщина напыленного слоя:
- при напылении металлов и сплавов, мм – 0,05–5,0;
- при напылении керамики, мм – 0,05–0,5.
Оборудования для плазменного напыления состоит, как правило, из одного или двух серийных сварочных источников питания, плазмотрона и порошкового дозатора. В качестве источника питания могут использоваться установки плазменной сварки и наплавки УПНС-304, плазменной обработки УПО-302, УПВ-301, плазменной резки УПРП-201 и сварочные выпрямители ВД-201, ВД-306, ВДУ-506 и др. Плазмотрон (мощностью до 25 кВт) и порошковый дозатор изготавливаются по оригинальным конструкторским разработкам.
Технологический процесс плазменного напыления в общем случае состоит из предварительной очистки (любым известным методом), активационной обработки (например, абразивно-струйной) и непосредственно нанесения покрытия путем перемещения изделия относительно плазмотрона или наоборот. Скорость перемещения 2...30 мм/сек, расстояние между плазмотроном и изделием 100...150 мм, диаметр пятна напыления 10...25 мм, толщина покрытия 0,05...1,0 мм. Температура нагрева деталей при ПН не превышает 100...150ºС. Плазмообразующим газом являются, как правило, аргон или воздух. Расход аргона 15...20 л/мин. В качестве порошкового материала, формирующего покрытие, используются различные материалы и сплавы, тугоплавкие соединения, оксиды, полимеры и их композиции размером частиц до 100 мкм.
Плазмотрон (плазменный распылитель, плазмотрон) был разработан в 1956 г. фирмами Gianini Corp. и UC на основе работ Смита (пат. 2157498, 1939 г.), предложившего устройство для нанесения покрытий, содержащее катод в форме стержня и анод в форме сопла.
Рис. 4.19. Схема работы плазменного распылителя:
1 – катодный узел; 2 – анодный узел; 3 – катод; 4 – анод
Плазменный распылитель (рис. 4.19) состоит из катодного 1 и анодного 2 узлов. Между катодом 3 и анодом 4 возбуждается электрическая дуга 5. Дуга в сопле анода отжимается газовым потоком от стенок охлаждаемого сопла, что увеличивает плотность ее энергии и повышает температуру столба дуги (рис. 4.20).
Рис. 4.20. Типы плазмотронов:
а – с самоустанавливающейся дугой; б – с фиксированной дугой
Плазмотроны постоянного тока бывают с самоустанавливающейся (рис. 4.20, а) и фиксированной длиной дуги, когда дуга удлиняется за счет последовательного переключения на аноды, разделенные между собой электрически нейтральными межэлектродными вставками (рис. 4.20, б).
При использовании аргона в качестве плазмообразующего газа на плазмотроне с самоустанавливающейся дугой падение напряжения составляет 30 В, а с фиксированной дугой – 100 В и более. На рис. 4.21 представлены схемы пруткового и проволочного плазменных распылителей. Радиальная подача материала (рис. 4.21, а) используется и для подачи порошковых материалов для нанесения покрытий.
а б
Рис. 4.21. Схемы плазменных распылителей:
а – пруткового; б – проволочного
Схема проволочного распыления «проволока–анод» была разработана В. В. Кудиновым в конце 50-х гг. Тогда удалось получить невиданную производительность – 15 кг/ч вольфрама при мощности 12 кВт. Порошковые распылители (рис. 4.22) в зависимости от свойств и размеров частиц создавались с подачей в плазменную струю 1, под углом навстречу потоку 2, в сопло в заанодную зону дуги 3 или в доанодную зону, как в плазмотроне М8-27 конструкции В. М. Иванова (рис. 4.23).
Рис. 4.22. Схемы подачи порошка в плазмотрон:
1, 2 – в плазменную струю; 3 – в сопло
Спроектированные плазмотроны большой мощности выполнены с подачей порошка в плазменную струю (рис. 4.23). Такая схема не влияет на дугу. Плазмотроны имеют завышенную мощность, чтобы тепла плазменной струи хватило на нагрев порошка.
Рис. 4.23. Схема распылителя М8-27:
1 – подача охлаждающей воды; 2 – подача плазмообразующего газа; 3 – подача порошка;
4 – слив воды; 5 – анодный узел; 6 – анод; 7 – изолятор; 8 – катодный узел; 9 – катод
Следует отметить, что подача порошка в доанодную зону была выгоднейшей с точки зрения теплообмена, но сопряжена с перегревом частиц в сопле и забиванием сопла расплавленными частицами из-за высоких требований к равномерности подачи порошка. Рассредоточенность подачи порошка в плазмотроне М8-27 обеспечивала устойчивую работу плазмотрона, который эксплуатируется уже более 40 лет.
Тенденции развития плазменных распылителей – увеличение эффективности процесса. Разработаны установки мощностью до 160…200 кВт, работающие на воздухе, аммиаке, пропане, водороде, в динамическом вакууме, в воде. Применение специальных сопл позволило получить сверхзвуковое истечение струи двухфазного потока, которое, в свою очередь, обеспечило получение плотного покрытия. С другой стороны, для нанесения покрытий на малые детали (поверхности), например, коронки в стоматологии, бандажные полки лопаток ГТД в авиастроении были разработаны микроплазменные горелки, работающие на токах 15…20 А при мощности до 2 кВт.
Увеличение ресурса соплового аппарата (катод – анод) плазменного распылителя повышенной мощности (50…80 кВт) тормозилось из-за низкой эрозионной стойкости медного сопла в зоне анодного пятна. С целью увеличения стойкости сопла были разработаны вольфрамовые вставки, запрессованные в медное сопло таким образом, чтобы теплота эффективно отводилась медной оболочкой и удалялась охлаждающей водой. Наиболее удачной была конструкция плазмотрона типа F-4, разработанного фирмой Plasma-Technik AG (рис. 4.24), работающего длительное время на токе до 800 А при мощности 55 кВт.
Рис. 4.24. Внешний вид распылителя F-4
Автоматическая установка плазменного напыления ТСЗП-MF-P-1000 (рис. 4.25) работает на смеси газов аргона, азота, водорода при расходе аргона до 100 л/мин, азота – до 50 л/мин, водорода – до 20 л/мин, транспортирующего газа – до 30 л/мин. Производительность напыления по металлическим сплавам – до 5 кг/ч. Плотность порошковых покрытий от 92 до 99%, прочность сцепления от 30 до 80 МПа. Установка комплектуется плазмотронами F-4 мощностью 55 кВт или F-1, для нанесения покрытий на внутренние поверхности диаметром от 90 мм при мощности 25 кВт, плазмотроном SG-100 мощностью 80 кВт и комплектуется роботом KUKA KR-16 грузоподъемностью на руке 16 кг, роботом KUKA KR-6 грузоподъемностью на руке 6 кг. Установка разработана предприятием «Технологические системы защитных покрытий».
Рис. 4.25. Установка плазменного напыления ТСЗП-MF-P-1000
Установка широко используется в авиационном и энергетическом машиностроении для создания керамических функциональных покрытий. На установке осуществляется нанесение износостойких, коррозионно-стойких, теплозащитных, уплотнительных покрытий методом плазменного напыления.
