- •Содержание
- •Введение
- •Глава 1. Методы упрочнения поверхностным пластическим деформированием
- •1.1. Вибрационные методы обработки в специальных средах
- •1.2. Дробеструйные методы обработки
- •1.3. Методы деформационного выглаживания
- •1.4. Ультразвуковая обработка
- •Список литературы к главе 1
- •Глава 2. Методы ионно-имплантационной обработки поверхностей деталей
- •С поверхностным слоем упрочняемого материала:
- •2.1. Низкоэнергетическая ионно-имплантационная обработка
- •2.1.1. Легирование вбиванием (легирование атомами отдачи)
- •2.1.2. Легирование ионами сверхмалых энергий
- •2.1.3. Глубокое проникновение по границам зерен. Стержнеобразные дефекты
- •2.1.4. Импульсный отжиг имплантационных слоев
- •2.1.5. Дефекты, возникающие при ионном легировании
- •Кроме этого, показано [20], что изменение дозы имплантируемого n от 1015 до 1018 см-2 приводит к экстремальному изменению -1 (рис. 2.6).
- •2.2. Высокоэнергетическая ионно-имплантационная обработка
- •2.3. Комбинированные методы обработки
- •Список литературы к главе 2
- •Глава 3. Методы нанесения защитных и специальных покрытий на лопатки турбомашин
- •3.1. Нанесение эрозионно- и коррозионностойких покрытий
- •Список литературы к п. 3.1
- •3.2. Нанесение жаростойких покрытий
- •3.2.1. Диффузионные покрытия
- •3.2.2. Конденсационные покрытия
- •3.2.3. Комбинированные покрытия
- •Список литературы к п. 3.2
- •3.3. Теплозащитные покрытия для лопаток турбин
- •Термобарьерные слои. Функцией термобарьерных покрытий является обеспечение термической изоляции лопатки. Покрытие около 200 мкм может снизить температуру лопатки более чем на 200c.
- •Список литературы к п. 3.3
- •3.4. Специальные конструкционные покрытия
- •Список литературы к п. 3.4
- •Список дополнительной литературы к п. 3.4
- •Глава 4. Специальное оборудование для обеспечения высокоэффективных технологий защитно-упрочняющей обработки поверхности деталей гтд
- •4.1. Оборудование для нанесения газотермических покрытий
- •4.1.1. Электродуговая металлизация
- •Для нанесения покрытий методом электродуговой металлизации используется: комплект оборудования электродуговой металлизации тсзп-ld/u2 300 или тсзп spark 400.
- •- Производительность при напылении цинка: 30 кг/ч;
- •4.1.2. Газопламенное напыление
- •Характеристики установки для газопламенного напыления тсзп-mdp-115 указаны в табл. 4.2.
- •Характеристики установки тсзп-mdp-115
- •Горелка glc-720 Характеристики горелки glc-720 для газопламенного напыления:
- •- Окислитель – кислород.
- •Горелка ak-07 Горелка (рис. 4.13) предназначена для газопламенного нанесения защитных покрытий различного состава.
- •Твердость – 1100 hv;
- •4.1.3. Плазменное напыление
- •Технические характеристики установки тсзп mf-p-1000:
- •Установка тсзп mf-p-1000 включает:
- •Система управления установкой (рис. 4.26) разработана на базе контроллера Simatic s7-300, смонтирована в пылезащищенном шкафу.
- •Холодильник vwk-270/1-s (рис. 4.30) Техническая характеристика:
- •Холодильник pc – 250 Холодильник рс-250 представлен на рис. 4.32.
- •Технические характеристики плазмотронов Плазмотрон f4 (рис. 4.33) Техническая характеристика плазмотрона f4:
- •Пистолет к-2. Технические характеристики:
- •Комплект оборудования для плазменной наплавки тсзп-pta-4
- •Перемещатели горелок
- •Список литературы к п. 4.1
- •4.2. Установки для нанесения покрытий методами конденсации в вакууме
- •2. Установка осаждения покрытий с вертикально-протяженным паровым потоком
- •С вертикально-протяженным паровым потоком
- •Список литературы к п. 4.2
- •4.3. Установки для комплексной ионно-плазменной и ионно-имплантационной обработки деталей
- •Список литературы к п. 4.3
- •4.4. Специальное технологическое оборудование для высокоэффективной обработки деталей
- •4.4.1. Катоды, использующие магнитные поля
- •4.4.2. Вакуумно-дуговые источники плазмы
- •4.4.3. Дополнительные устройства для улучшения качества работы вакуумных испарителей
- •Список литературы к п. 4.4
- •Заключение
1.1. Вибрационные методы обработки в специальных средах
Статико-импульсная обработка
Статико-импульсная обработка является значительно усовершенствованным процессом ударной чеканки – упорядоченного ударного воздействия на упрочняемую поверхность. Выполняется специальными бойками с помощью механизированного инструмента.
Статико-импульсная обработка относится к новым видам обработки ППД, отличающимся способом подвода энергии в зону деформации. Пластическая деформация металла осуществляется управляемым импульсным воздействием, сообщаемым ударной системой «боек–волновод» статически нагруженному инструменту. Использование предударного статического поджатия инструмента к обрабатываемой поверхности позволяет увеличить ее площадь контакта с инструментом, способствуя уменьшению искажений передаваемого ударного импульса и уменьшая потери энергии удара.
Технология упрочнения статико-импульсной обработки включает следующие этапы: предварительное статическое и последующее периодическое импульсное нагружения инструмента. Процесс обработки осуществляется при помощи специально разработанного высокочастотного генератора механических импульсов, позволяющего регулировать энергию и частоту импульсов в широком диапазоне.
Преимуществом статико-импульсной обработки перед другими способами ППД является малая энергоемкость, высокий коэффициент передачи энергии упрочняемой поверхности, возможность воздействия на упрочняемую поверхность управляемым импульсом, компактность устройства для упрочнения, возможность установки его на металлообрабатывающее оборудование.
Технологическими факторами статико-импульсной обработки являются: энергия и частота ударов, скорость перемещения заготовки относительно инструмента, величина статического поджима, форма и размеры инструмента, число проходов. Были проведены исследования по оценке влияния энергии ударов и формы деформирующего инструмента. При этом соотношения частоты ударов и скорости перемещения заготовки относительно инструмента, характеризующие кратность силового воздействия, выбирались из условия достаточной плотности расположения пластических вмятин. Для назначения более точных режимов упрочнения статико-импульсной обработки, упрощения и удешевления технологии упрочнения статико-импульсной обработки необходимо исследовать влияние кратности силового воздействия на характеристики качества упрочненного поверхностного слоя.
Статико-импульсная обработка используется и для упрочнения широкой номенклатуры тяжелонагруженных деталей, большинство из которых имеют профильные рабочие поверхности (зубья шлицев, витки резьбы и т.д.), а также галтели. Упрочнение ППД позволяет повысить усталостную прочность таких деталей. Известны способы упрочнения профилей методами ППД, в частности накаткой, при этом глубина упрочненного слоя может составлять 1…2 мм. Однако высокие действующие нагрузки требуют создания упрочненного слоя большей глубины. Статико-импульсная обработка ППД позволяет получать упрочненный поверхностный слой с глубиной до 8…10 мм и более.
Одним из вариантов технологии упрочняющей обработки вибронакатыванием со статико-импульсным нагружением инструмента является способ вибронакатывания плоскостей (Пат. РФ № 2440232, МПК B24B39/06. Ю. С. Степанов и др., Бюл. № 2, 2012). Технология предназначена для поверхностного пластического деформирования вибронакатыванием плоских поверхностей. Технология реализуется при помощи устройства (рис. 1.3), которое содержит корпус 1 с деформирующими элементами 2, которому сообщают вращение со скоростью VИ. Корпус представляет собой диск, с одного торца которого расточены глухие отверстия 3, расположенные под острым углом, который может быть выполнен в диапазоне 0<<45° к продольной оси.
В отверстиях корпуса, с возможностью возвратно-поступательного перемещения по скользящей посадки вдоль осей отверстий, установлены штоки 4.
На внешних торцах штоков закреплены деформирующие элементы 2, например шарики, которые удерживаются сепаратором 5. Деформирующими элементами могут быть шарики, ролики и другой формы элементы. На внутренние торцы штоков воздействуют пакеты тарельчатых пружин 6, предварительно сжатые, создающие рабочее давление и находящиеся в глухих отверстиях корпуса. Тарельчатые пружины аккумулируют энергию осциллирующего движения АК корпуса и работают как буферы и амортизаторы, воспринимая большие силы при относительно малых габаритных размерах.
Рис. 1.3. Схема устройства для упрочняющей обработки вибронакатыванием со статико-импульсным нагружением инструмента (Пат. РФ № 2440232):
1 – корпус; 2 – деформирующие элементы; 3 – отверстия корпуса; 4 – штоки;
5 – сепаратор; 6 – пакеты тарельчатых пружин; 7 – кольца; 8 – кулачки; 9 – барабан;
10 – кулачки; 11 – шпиндель; 12 – шлицевая шейка; 13 – пружина; 14 – гайка
Корпусу 1 сообщают дополнительное возвратно-продольное осциллирующее движение АК относительно продольной оси, благодаря которому деформирующие элементы 2 совершают радиальные возвратно-поперечные колебательные движения А. Осциллирующее движение АК корпуса осуществляется с помощью кольца 7 с кулачками 8. Кольцо 7 жестко закреплено и неподвижно запрессовано на свободном торце, противоположном торцу с отверстиями 3 корпуса и имеет выступы и впадины, которые образуют кулачки 8. Высота кулачков Н, т.е. глубина впадины, влияет на величину амплитуды осциллирующего движения корпуса АК. Кулачки 8 кольца контактируют с барабаном 9 кулачками 10, профиль последних является ответным профилю кулачков 8 кольца 7. Барабан 9 неподвижно закреплен на шпиндельной бабке на станке (не показаны), на котором ведется вибронакатывание плоских поверхностей данным устройством. Шпиндель 11 имеет шлицевую шейку 12, на которой подвижно центральным шлицевым отверстием установлен корпус 1 с возможностью возвратно-продольного перемещения АК относительно шлицевого шпинделя с поджатием винтовой цилиндрической пружиной сжатия 13 с помощью гайки 14. Количество штоков и деформирующих элементов принимается по конструктивным соображениям. На внутренний торец штоков воздействует пакет тарельчатых пружин 6, предварительно сжатых, создающих рабочие номинальные давления и находящихся в глухом отверстии.
