- •Содержание
- •Введение
- •Глава 1. Методы упрочнения поверхностным пластическим деформированием
- •1.1. Вибрационные методы обработки в специальных средах
- •1.2. Дробеструйные методы обработки
- •1.3. Методы деформационного выглаживания
- •1.4. Ультразвуковая обработка
- •Список литературы к главе 1
- •Глава 2. Методы ионно-имплантационной обработки поверхностей деталей
- •С поверхностным слоем упрочняемого материала:
- •2.1. Низкоэнергетическая ионно-имплантационная обработка
- •2.1.1. Легирование вбиванием (легирование атомами отдачи)
- •2.1.2. Легирование ионами сверхмалых энергий
- •2.1.3. Глубокое проникновение по границам зерен. Стержнеобразные дефекты
- •2.1.4. Импульсный отжиг имплантационных слоев
- •2.1.5. Дефекты, возникающие при ионном легировании
- •Кроме этого, показано [20], что изменение дозы имплантируемого n от 1015 до 1018 см-2 приводит к экстремальному изменению -1 (рис. 2.6).
- •2.2. Высокоэнергетическая ионно-имплантационная обработка
- •2.3. Комбинированные методы обработки
- •Список литературы к главе 2
- •Глава 3. Методы нанесения защитных и специальных покрытий на лопатки турбомашин
- •3.1. Нанесение эрозионно- и коррозионностойких покрытий
- •Список литературы к п. 3.1
- •3.2. Нанесение жаростойких покрытий
- •3.2.1. Диффузионные покрытия
- •3.2.2. Конденсационные покрытия
- •3.2.3. Комбинированные покрытия
- •Список литературы к п. 3.2
- •3.3. Теплозащитные покрытия для лопаток турбин
- •Термобарьерные слои. Функцией термобарьерных покрытий является обеспечение термической изоляции лопатки. Покрытие около 200 мкм может снизить температуру лопатки более чем на 200c.
- •Список литературы к п. 3.3
- •3.4. Специальные конструкционные покрытия
- •Список литературы к п. 3.4
- •Список дополнительной литературы к п. 3.4
- •Глава 4. Специальное оборудование для обеспечения высокоэффективных технологий защитно-упрочняющей обработки поверхности деталей гтд
- •4.1. Оборудование для нанесения газотермических покрытий
- •4.1.1. Электродуговая металлизация
- •Для нанесения покрытий методом электродуговой металлизации используется: комплект оборудования электродуговой металлизации тсзп-ld/u2 300 или тсзп spark 400.
- •- Производительность при напылении цинка: 30 кг/ч;
- •4.1.2. Газопламенное напыление
- •Характеристики установки для газопламенного напыления тсзп-mdp-115 указаны в табл. 4.2.
- •Характеристики установки тсзп-mdp-115
- •Горелка glc-720 Характеристики горелки glc-720 для газопламенного напыления:
- •- Окислитель – кислород.
- •Горелка ak-07 Горелка (рис. 4.13) предназначена для газопламенного нанесения защитных покрытий различного состава.
- •Твердость – 1100 hv;
- •4.1.3. Плазменное напыление
- •Технические характеристики установки тсзп mf-p-1000:
- •Установка тсзп mf-p-1000 включает:
- •Система управления установкой (рис. 4.26) разработана на базе контроллера Simatic s7-300, смонтирована в пылезащищенном шкафу.
- •Холодильник vwk-270/1-s (рис. 4.30) Техническая характеристика:
- •Холодильник pc – 250 Холодильник рс-250 представлен на рис. 4.32.
- •Технические характеристики плазмотронов Плазмотрон f4 (рис. 4.33) Техническая характеристика плазмотрона f4:
- •Пистолет к-2. Технические характеристики:
- •Комплект оборудования для плазменной наплавки тсзп-pta-4
- •Перемещатели горелок
- •Список литературы к п. 4.1
- •4.2. Установки для нанесения покрытий методами конденсации в вакууме
- •2. Установка осаждения покрытий с вертикально-протяженным паровым потоком
- •С вертикально-протяженным паровым потоком
- •Список литературы к п. 4.2
- •4.3. Установки для комплексной ионно-плазменной и ионно-имплантационной обработки деталей
- •Список литературы к п. 4.3
- •4.4. Специальное технологическое оборудование для высокоэффективной обработки деталей
- •4.4.1. Катоды, использующие магнитные поля
- •4.4.2. Вакуумно-дуговые источники плазмы
- •4.4.3. Дополнительные устройства для улучшения качества работы вакуумных испарителей
- •Список литературы к п. 4.4
- •Заключение
4.1.2. Газопламенное напыление
Газопламенное напыление в зависимости от состояния напыляемого материала может быть трех типов: напыление проволокой, прутком или порошком.
Схема процесса газопламенного напыления показана на рис. 4.4.
Рис. 4.4. Схема процесса газопламенного напыления:
П – покрытие; С – струя напыляемого материала и продуктов сгорания газов
Напыляемый материал, имеющий форму прутка или проволоки, подают через центральное отверстие горелки и расплавляют пламенем горючей смеси. Расплавленные частицы металла подхватываются струёй сжатого воздуха и в мелкораспыленном виде направляются на поверхность изделия. Проволока подаётся с заданной скоростью роликами, приводимыми в движение встроенной в горелку воздушной турбиной, работающей на сжатом воздухе, используемом при напылении, или электродвигателем через редуктор. Для напыления обычно используют проволоку диаметром не более 3 мм, однако при напылении легкоплавкими металлами (алюминий, цинк и т. п.) в интересах повышения производительности процесса допускается использование проволоки диаметром 5–7 мм. В качестве горючего газа в большинстве случаев используют ацетилен, можно также применять пропан и водород, а в качестве окислителя – кислород. При газопламенном способе напыление осуществляется в основном теми материалами, температура плавления которых ниже температуры пламени. После напыления иногда проводят оплавление покрытия, которому, в частности, подвергают покрытия, напыленные самофлюсующимися сплавами на никелевой и кобальтовой основе с добавлением в них в качестве флюсующих добавок бора и кремния. Оплавление обеспечивает получение плотного покрытия, практически без пористости. Технология газопламенного напыления довольно проста, а стоимость оборудования и затраты на эксплуатацию низкие, в связи с этим данный способ находит широкое применение в практике. Процесс газопламенного напыления хорошо поддается автоматизации.
Краткие характеристики покрытия:
- пористость покрытия: 5–12%;
- прочность сцепления покрытия с основой (адгезия): 2,5–5,0 кг/ мм²;
- толщина напыленного слоя: 0,5–10 мм.
Установка газопламенного напыления ТСЗП-MDP-115
для нанесения покрытий газопламенным методом
Установка включает в себя (рис. 4.5): блок управления (рис. 4.6), пульт дистанционного управления, пистолет для газопламенного напыления (рис. 4.7), блок газоподготовки (рис. 4.8), комплект кабелей и шлангов с обратными клапанами.
Блок управления установкой (рис. 4.6), обеспечивает регулирование скорости подачи проволоки и поддерживает заданные режимы технологического процесса напыления. На экране блока управления высвечивается выбранная скорость. С блока управления может также осуществляться запуск пистолета MDP-115 (рис.4.7).
Рис. 4.5. Процесс напыления на установке газопламенного напыления
ТСЗП-MDP-115:
1 – пистолет для газопламенного напылении; 2 – струя напыляемого материала
и продуктов сгорания газов; 3 – деталь
Рис. 4.6. Блок управления установки ТСЗП-MDP-115
Пистолет для газопламенного напыления MDP-115 (рис. 4.7) Пистолет осуществляет распыление подаваемой проволоки за счет тепла сгорающего в кислороде ацетилена или пропана. Основные части пистолета: электродвигатель привода подачи проволоки, редуктор, механизм прижима проволоки, узел подачи газа и воздуха, сопловая часть. Габаритные размеры: длина 250 мм, ширина 230 мм, высота 180 мм, масса 4,1 кг.
Рис. 4.7. Внешний вид пистолета для газопламенного напыления MDP-115:
1 – сопло; 2 – штуцера для подачи газов
Блок газоподготовки (рис. 4.8) содержит: сдвоенный ротаметр для регулирования расхода кислорода и ацетилена; систему подготовки воздуха с масло- и влагоотделителями, манометром и регулирующими вентилями.
Рис. 4.8. Внешний вид блока газоподготовки
