- •Содержание
- •Введение
- •Глава 1. Методы упрочнения поверхностным пластическим деформированием
- •1.1. Вибрационные методы обработки в специальных средах
- •1.2. Дробеструйные методы обработки
- •1.3. Методы деформационного выглаживания
- •1.4. Ультразвуковая обработка
- •Список литературы к главе 1
- •Глава 2. Методы ионно-имплантационной обработки поверхностей деталей
- •С поверхностным слоем упрочняемого материала:
- •2.1. Низкоэнергетическая ионно-имплантационная обработка
- •2.1.1. Легирование вбиванием (легирование атомами отдачи)
- •2.1.2. Легирование ионами сверхмалых энергий
- •2.1.3. Глубокое проникновение по границам зерен. Стержнеобразные дефекты
- •2.1.4. Импульсный отжиг имплантационных слоев
- •2.1.5. Дефекты, возникающие при ионном легировании
- •Кроме этого, показано [20], что изменение дозы имплантируемого n от 1015 до 1018 см-2 приводит к экстремальному изменению -1 (рис. 2.6).
- •2.2. Высокоэнергетическая ионно-имплантационная обработка
- •2.3. Комбинированные методы обработки
- •Список литературы к главе 2
- •Глава 3. Методы нанесения защитных и специальных покрытий на лопатки турбомашин
- •3.1. Нанесение эрозионно- и коррозионностойких покрытий
- •Список литературы к п. 3.1
- •3.2. Нанесение жаростойких покрытий
- •3.2.1. Диффузионные покрытия
- •3.2.2. Конденсационные покрытия
- •3.2.3. Комбинированные покрытия
- •Список литературы к п. 3.2
- •3.3. Теплозащитные покрытия для лопаток турбин
- •Термобарьерные слои. Функцией термобарьерных покрытий является обеспечение термической изоляции лопатки. Покрытие около 200 мкм может снизить температуру лопатки более чем на 200c.
- •Список литературы к п. 3.3
- •3.4. Специальные конструкционные покрытия
- •Список литературы к п. 3.4
- •Список дополнительной литературы к п. 3.4
- •Глава 4. Специальное оборудование для обеспечения высокоэффективных технологий защитно-упрочняющей обработки поверхности деталей гтд
- •4.1. Оборудование для нанесения газотермических покрытий
- •4.1.1. Электродуговая металлизация
- •Для нанесения покрытий методом электродуговой металлизации используется: комплект оборудования электродуговой металлизации тсзп-ld/u2 300 или тсзп spark 400.
- •- Производительность при напылении цинка: 30 кг/ч;
- •4.1.2. Газопламенное напыление
- •Характеристики установки для газопламенного напыления тсзп-mdp-115 указаны в табл. 4.2.
- •Характеристики установки тсзп-mdp-115
- •Горелка glc-720 Характеристики горелки glc-720 для газопламенного напыления:
- •- Окислитель – кислород.
- •Горелка ak-07 Горелка (рис. 4.13) предназначена для газопламенного нанесения защитных покрытий различного состава.
- •Твердость – 1100 hv;
- •4.1.3. Плазменное напыление
- •Технические характеристики установки тсзп mf-p-1000:
- •Установка тсзп mf-p-1000 включает:
- •Система управления установкой (рис. 4.26) разработана на базе контроллера Simatic s7-300, смонтирована в пылезащищенном шкафу.
- •Холодильник vwk-270/1-s (рис. 4.30) Техническая характеристика:
- •Холодильник pc – 250 Холодильник рс-250 представлен на рис. 4.32.
- •Технические характеристики плазмотронов Плазмотрон f4 (рис. 4.33) Техническая характеристика плазмотрона f4:
- •Пистолет к-2. Технические характеристики:
- •Комплект оборудования для плазменной наплавки тсзп-pta-4
- •Перемещатели горелок
- •Список литературы к п. 4.1
- •4.2. Установки для нанесения покрытий методами конденсации в вакууме
- •2. Установка осаждения покрытий с вертикально-протяженным паровым потоком
- •С вертикально-протяженным паровым потоком
- •Список литературы к п. 4.2
- •4.3. Установки для комплексной ионно-плазменной и ионно-имплантационной обработки деталей
- •Список литературы к п. 4.3
- •4.4. Специальное технологическое оборудование для высокоэффективной обработки деталей
- •4.4.1. Катоды, использующие магнитные поля
- •4.4.2. Вакуумно-дуговые источники плазмы
- •4.4.3. Дополнительные устройства для улучшения качества работы вакуумных испарителей
- •Список литературы к п. 4.4
- •Заключение
Глава 3. Методы нанесения защитных и специальных покрытий на лопатки турбомашин
При физическом осаждении PVD (physical vapor deposition) материал катода переходит из твердого состояния в газообразное, затем происходит осаждение материала на подложку. Материал катода может переходить в газовую фазу в результате испарения (под воздействием тепловой энергии) или в результате распыления (под действием бомбардирующих ионов). Испарение осуществляется за счет резистивного сопротивления, индукционного нагрева, электронно-лучевых пучков, низковольтной дуги, катодной или анодной дуги, лазерного луча.
Рис. 3.1. Процесс перехода материала катода из твердого
в газообразное состояние
Процессы могут проходить как самостоятельно, так и с дополнительной ионизацией в среде реакционного газа, а также с напряжением смещения. Распыление осуществляется высокоэнергетичными ионами, которые приобретают необходимую энергию, ускоряясь в электрическом поле, и распыляют атомы материала катода. Распыление может происходить при постоянном токе или токе высокой частоты, в среде реакционного газа или без него, с напряжением смещения или без него, с дополнительным магнитным полем. В машиностроении наиболее широко применяются магнетронный и вакуумно-дуговой PVD методы нанесения покрытий
Магнетронный метод. Магнетронный метод представляет собой разновидность метода катодного распыления, при котором у поверхности распыляемого катода (мишени) при помощи скрещенных магнитного и электрического полей формируется слой плазмы, плотность которой на порядки больше, чем в обычных (безмагнитных) системах катодного распыления. Следовательно, значительно возрастают плотность ионного тока на катод и скорость ионного распыления. Для получения соединений к инертному газу добавляют соответствующие реакционные газы (азот, метан, ацетилен и другие газы).
Рис. 3.2. Процесс магнетронного распыления
Магнетронный метод позволяет наносить широкий спектр покрытий из разнообразных металлов и их соединений с высокой равномерностью свойств, в том числе высокотвердые износостойкие покрытия. Распыленные частицы представляют собой на 75–95% нейтральные атомы, поэтому подложка (деталь) слабо нагревается, что позволяет осаждать покрытия на детали, имеющие низкую температуру плавления. Напряжение разряда 500–800 В, ток разряда – от десятых долей до десятков и сотен ампер. Адгезия магнетронных покрытий несколько ниже, чем у покрытий, полученных с помощью дугового разряда.
Вакуумно-дуговой метод. В этом случае между катодом и анодом инициируется вакуумная дуга, которая испаряет материал катода. В отличие от всех других методов продуктом эрозии является не поток атомов, а поток ионов материала катода с энергией от 20 эВ у легких до 180 эВ у тяжелых атомов. При этом напряжение разряда составляет 20–30 В при токе от нескольких десятков до сотен ампер. При этом обеспечивается достаточно высокие скорости роста покрытий до 1,5 мкм/мин и более, в зависимости от материала.
Рис. 3.3. Процесс вакуумно-дугового распыления
При вакуумно-дуговом испарении осаждение осуществляется из плазмы испаряемого материала покрытия при высоких и управляемых энергиях частиц, что обеспечивает нагрев и термоактивацию подложки в процессе осаждения покрытия; предварительную очистку покрываемой поверхности за счет бомбардировки ионами материала покрытия; плотность материала покрытия; адгезию покрытия на уровне прочности атомной связи с подложкой; высокую точность и воспроизводимость; cубмелкозернистую (пластичную) структуру покрытия; возможность управления структурой покрытия. При вакуумно-дуговом методе, вследствие осаждения покрытия за счет высокоэнергетичных ионов, деталь может сильно нагреться, что делает невозможным применение этого метода осаждения к легкоплавким материалам, пластмассам.
Однако дуговой метод нанесения покрытий имеет существенный недостаток – наличие в плазме потока микрокапельной фазы – испускаемых катодным пятном частиц металла размером 0,1–10 мкм и менее (рис. 3.4). Микрокапли осаждаются на подложку и снижают эксплуатационные характеристики покрытия: оптические, износостойкие, стойкость к коррозии и др.
Современные высокотехнологичные вакуумно-дуговые установки максимально возможно снижают размеры и количество капельной фазы.
Рис. 3.4. Покрытие с капельной фазой
Широкий диапазон свойств вакуумно-дуговых покрытий позволяет использовать их в промышленности, в особенности в машиностроении. Наибольшее распространение получили износостойкие покрытия, применяемые для увеличения срока службы инструментов и деталей машин и декоративные покрытия.
