- •Содержание
- •Введение
- •Глава 1. Методы упрочнения поверхностным пластическим деформированием
- •1.1. Вибрационные методы обработки в специальных средах
- •1.2. Дробеструйные методы обработки
- •1.3. Методы деформационного выглаживания
- •1.4. Ультразвуковая обработка
- •Список литературы к главе 1
- •Глава 2. Методы ионно-имплантационной обработки поверхностей деталей
- •С поверхностным слоем упрочняемого материала:
- •2.1. Низкоэнергетическая ионно-имплантационная обработка
- •2.1.1. Легирование вбиванием (легирование атомами отдачи)
- •2.1.2. Легирование ионами сверхмалых энергий
- •2.1.3. Глубокое проникновение по границам зерен. Стержнеобразные дефекты
- •2.1.4. Импульсный отжиг имплантационных слоев
- •2.1.5. Дефекты, возникающие при ионном легировании
- •Кроме этого, показано [20], что изменение дозы имплантируемого n от 1015 до 1018 см-2 приводит к экстремальному изменению -1 (рис. 2.6).
- •2.2. Высокоэнергетическая ионно-имплантационная обработка
- •2.3. Комбинированные методы обработки
- •Список литературы к главе 2
- •Глава 3. Методы нанесения защитных и специальных покрытий на лопатки турбомашин
- •3.1. Нанесение эрозионно- и коррозионностойких покрытий
- •Список литературы к п. 3.1
- •3.2. Нанесение жаростойких покрытий
- •3.2.1. Диффузионные покрытия
- •3.2.2. Конденсационные покрытия
- •3.2.3. Комбинированные покрытия
- •Список литературы к п. 3.2
- •3.3. Теплозащитные покрытия для лопаток турбин
- •Термобарьерные слои. Функцией термобарьерных покрытий является обеспечение термической изоляции лопатки. Покрытие около 200 мкм может снизить температуру лопатки более чем на 200c.
- •Список литературы к п. 3.3
- •3.4. Специальные конструкционные покрытия
- •Список литературы к п. 3.4
- •Список дополнительной литературы к п. 3.4
- •Глава 4. Специальное оборудование для обеспечения высокоэффективных технологий защитно-упрочняющей обработки поверхности деталей гтд
- •4.1. Оборудование для нанесения газотермических покрытий
- •4.1.1. Электродуговая металлизация
- •Для нанесения покрытий методом электродуговой металлизации используется: комплект оборудования электродуговой металлизации тсзп-ld/u2 300 или тсзп spark 400.
- •- Производительность при напылении цинка: 30 кг/ч;
- •4.1.2. Газопламенное напыление
- •Характеристики установки для газопламенного напыления тсзп-mdp-115 указаны в табл. 4.2.
- •Характеристики установки тсзп-mdp-115
- •Горелка glc-720 Характеристики горелки glc-720 для газопламенного напыления:
- •- Окислитель – кислород.
- •Горелка ak-07 Горелка (рис. 4.13) предназначена для газопламенного нанесения защитных покрытий различного состава.
- •Твердость – 1100 hv;
- •4.1.3. Плазменное напыление
- •Технические характеристики установки тсзп mf-p-1000:
- •Установка тсзп mf-p-1000 включает:
- •Система управления установкой (рис. 4.26) разработана на базе контроллера Simatic s7-300, смонтирована в пылезащищенном шкафу.
- •Холодильник vwk-270/1-s (рис. 4.30) Техническая характеристика:
- •Холодильник pc – 250 Холодильник рс-250 представлен на рис. 4.32.
- •Технические характеристики плазмотронов Плазмотрон f4 (рис. 4.33) Техническая характеристика плазмотрона f4:
- •Пистолет к-2. Технические характеристики:
- •Комплект оборудования для плазменной наплавки тсзп-pta-4
- •Перемещатели горелок
- •Список литературы к п. 4.1
- •4.2. Установки для нанесения покрытий методами конденсации в вакууме
- •2. Установка осаждения покрытий с вертикально-протяженным паровым потоком
- •С вертикально-протяженным паровым потоком
- •Список литературы к п. 4.2
- •4.3. Установки для комплексной ионно-плазменной и ионно-имплантационной обработки деталей
- •Список литературы к п. 4.3
- •4.4. Специальное технологическое оборудование для высокоэффективной обработки деталей
- •4.4.1. Катоды, использующие магнитные поля
- •4.4.2. Вакуумно-дуговые источники плазмы
- •4.4.3. Дополнительные устройства для улучшения качества работы вакуумных испарителей
- •Список литературы к п. 4.4
- •Заключение
2.1.5. Дефекты, возникающие при ионном легировании
1. Ионное каналирование. Эффект каналирования наблюдается при попадании иона в свободное пространство между рядами атомов. Как только ион попадает в это пространство, на него начинают действовать потенциальные силы атомных рядов, направляющие его в центр канала. В результате этого ион продвигается на значительные расстояния. Такой ион постепенно теряет энергию за счет слабых скользящих столкновений со стенками канала и, в конце концов, покидает эту область. Расстояние, проходимое ионом в канале, может в несколько раз превышать длину пробега иона в аморфной мишени.
Эффект каналирования характеризуется наличием «хвостов» концентрации атомов, выявляемых с помощью метода масспектрометрии вторичных ионов и «хвостов» концентрации свободных носителей зарядов, обнаруживаемых при проведении электрических измерений. Попытки устранения эффекта каналирования путем ориентации кремниевой монокристаллической подложки в наиболее плотно упакованных направлениях сводят его к минимуму, но не исключают полностью.
2. Образование радиационных дефектов. При внедрении ионов в кремниевую кристаллическую подложку они подвергаются электронным и ядерным столкновениям, однако только ядерные взаимодействия приводят к смещению атомов кремния. Легкие и тяжелые ионы производят качественно различное «дерево радиационных дефектов».
Легкие ионы при внедрении в мишень первоначально испытывают в основном электронное торможение. На профиле распределения смещенных атомов по глубине подложки существует скрытый максимум концентрации. При внедрении тяжелых ионов наблюдается их сильное торможение.
Тяжелые ионы смещают большое количество атомов мишени из узлов кристаллической решетки вблизи поверхности подложки. На окончательном профиле распределение плотности радиационных дефектов, который повторяет распределение длин пробега выбитых атомов кремния, существует широкий скрытый пик. Сложная структура различных типов дефектов вдоль траектории движения иона вызвана распределением смещенных атомов.
Вводимые в процессе ионной имплантации дефекты состоят из вакансий и дивакансий. При нагреве мишени пучком ионов в процессе имплантации до температуры выше 500оС будут образовываться дислокации.
В ряде экспериментов (особенно с имплантацией ионов низких энергий) примесные атомы обнаруживаются на глубинах, в сотни и тысячи раз превышающих расчетный пробег иона. В связи с этим целесообразно рассмотреть процесс, который может способствовать проникновению примеси на глубины, не имеющие никакого отношения к пробегу имплантируемых ионов. Этот процесс – направленное перемещение атомов вследствие неоднородного механического напряжения приповерхностных слоев легируемого образца.
Сорт и доза имплантируемого иона являются весьма важным фактором в определении усталости материала. Так в [19], для стали ЗОХГСНA, исследовано влияние ИИ В+, С+, N+ (Д = 1017 см-2, Е = 40 кэВ) (рис. 2.5). Установлено, что при ИИ N+, как оптимальном сорте иона, уменьшается разброс экспериментальных значений долговечности и увеличивается время до зарождения усталостной трещины при напряжениях выше предела выносливости
Рис. 2.5. Кривые выносливости стали 30ХГСНА:
1 – исходное состояние; 2 – ИИ B+; 3 – ИИ С+; 4 – ИИ N+ [19]
