Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 6-Изгиб.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
630.78 Кб
Скачать

Д ля решения задач по нахождению перемещений в балках методом начальных параметров необходимо (пример: рис.6.23):

1) Выбрать начало координат в одном из крайних сечений балки (лучше в левом) и считать его общим для всех участков.

2) Для последнего силового участка балки составляется универсальное уравнение упругой линии балки УУУЛБ.

Для составления выражения для распределенной нагрузки её предварительно продолжают до конца (последнего) сечения и вводят дополнительную компенсирующую нагрузку обратного направления.

3) Определяются начальные параметры УУУЛБ.

Геометрические начальные параметры.

Статические начальные параметры.

4) Подставляются все найденные начальные параметры в исходное УУУЛБ и путем дифференцирования получается универсальное уравнение углов поворота балки УУУЛБ.

В этом же пункте определяются искомые перемещения, для чего в соответствующее уравнение подставляется абсцисса искомой точки и отбрасываются слагаемые, характеризующие внешние нагрузки, которые находятся за пределами рассматриваемого участка.

Рассмотренный метод начальных параметров является достаточно простым и универсальным, но имеет следующие недостатки.

1) Он не применим для балок с ломаной осью, рамным систем и кривых брусьев.

2) Не позволяет определить перемещение в произвольных направлениях, кроме вертикального.

Для устранения этих недостатков в курсе сопротивления материалов широко применяются так называемые энергетические способы, основанные на известном законе сохранения энергии.

§7 Потенциальная энергия упругой деформации (пэуд)

в общем случае нагружения бруса. Теорема Кастильяно.

На основании закона сохранения энергии работа внешних сил на перемещениях точек системы равна потенциальной энергии упругой деформации

Основываясь на положениях этого закона можно зная величину энергии, накопленной брусом, найти перемещение ее точек при известных внешних нагрузках. Получим общую зависимость для ПЭУД произвольного бруса, находящегося под воздействием разнообразных внешних нагрузок, для этого составим сумму работ, совершаемых шестью внутренними силовыми факторами.

Учитывая известное выражение работ для простых деформаций получим следующее выражение

kx, ky – безразмерные коэффициенты, характеризующие форму сечения бруса при сдвиге.

Для нахождения перемещений с помощью ПЭУД применяется так называемая теорема Кастильяно:

Обобщенные перемещения в точке приложения некоторой обобщенной нагрузки представляют собой частную производную потенциальной энергии по заданной обобщенной нагрузке.

где δk – обобщенное перемещение в точке К, где приложена внешняя обобщенная нагрузка, по ее направлению.

FK – обобщенная нагрузка, действующая в точке К.

Под обобщенным перемещением понимается перемещение, вызываемое соответствующей обобщенной нагрузкой. В частности,

Д анная теорема обладает тем недостатком, что позволяет находить только перемещения, соответствующие данной обобщенной нагрузке, только в точке её приложения и только по ее направлению.

§8 Метод для нахождения перемещений в упругих системах.

Н едостатки теоремы Кастильяно можно устранить, если использовать прием, предложенный Мором-Максвеллом. Этот метод основан на применении так называемой фиктивной обобщенной нагрузки Φ.

Суть метода заключается в следующем:

1) В заданной точке системы прикладывается соответствующая обобщенная параметром фиктивная нагрузка, которая условно принимается равной единице.

Направление приложения фиктивной нагрузки соответствует искомому направлению. Для прогиба удобно единичную силу направлять снизу вверх согласно положительному направлению прогиба (см. правило знаков для прогиба). Единичный момент направляется против часовой стрелки в соответствии с положительным направлением угла поворота.

2) Определяется потенциальная энергия упругой деформации всей системы, которая подставляется в зависимость , выражающую теорему Кастильяно и производится расчет частной производной по данной фиктивной нагрузке.

В полученном выражении исключается фиктивная нагрузка, т.к. ее на самом деле нет.

Для удобства практического расчета все преобразования рассмотренные выше исключаются и расчет перемещений выполняется по формуле, называемой интегралом Мора (запишем применительно к деформации изгиба).

где  – изгибающий момент от действия единичной фиктивной нагрузки в iтом сечении системы.

 – изгибающий момент от действия внешней нагрузки для iтого сечения.

Р ассмотрим следующий пример (рис.6.25).

yB – ?

Выбирается вспомога­тельная схема, которая загружается соответству­ющей единичной нагрузкой. Чтобы взять вспомогатель­ную схему, надо на исходной схеме отбросить все внешние нагрузки.

Для исходной и вспомо­гательной схем составляются общие выражения изгибающих моментов по всем участкам, которые подставляются в интеграл Мора.

Метод Мора является самым сильным по возможности расчета перемещений (его можно применить для любой схемы), однако его недостатком является высокая трудоемкость при расчете систем с большим количеством силовых участков.

Для сокращения сложности таких расчетов интеграл Мора обычно заменяют операцией умножения согласно способа Верещагина (1924 г.).