
- •Вопросы для самопроверки
- •Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.
- •2. Определители 2, 3 и n-го порядков (определения и их свойства). Теорема Лапласа о разложении определителя по элементам строки или столбца.
- •3. Квадратная матрица и ее определитель. Особенная и неособенная квадратные матрицы. Присоединенная матрица. Матрица, обратная данной, и алгоритм ее вычисления.
- •4. Понятие минора k-го порядка. Ранг матрицы (определение). Вычисление ранга матрицы с помощью элементарных преобразований. Пример.
- •5. Линейная независимость строк (столбцов) матрицы. Теорема о ранге матрицы.
- •7. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.
- •8. Система m линейных уравнений с n переменными. Теорема Кронекера – Капелли. Условие определенности и неопределенности любой системы линейных уравнений.
- •9. Базисные (основные) и свободные (неосновные) переменные системы m линейных уравнений с n переменными. Базисное решение.
- •10. Система линейных однородных уравнений и ее решения. Условие существования ненулевых решений такой системы.
- •11. Векторы на плоскости и в пространстве (геометрические векторы). Линейные операции над векторами (сложение, умножение вектора на число). Коллинеарные и компланарные векторы.
- •12. Скалярное произведение двух векторов (определение) и его выражение в координатной форме. Угол между векторами.
- •14. Векторное (линейное) пространство. Его размерность и базис. Теорема о существовании и единственности разложения вектора линейного пространства по векторам базиса.
- •15. Скалярное произведение векторов в n-мерном пространстве. Евклидово пространство. Длина (норма) вектора.
- •16. Ортогональные векторы. Ортогональный и ортонормированный базисы. Теорема о существовании ортонормированного базиса в евклидовом пространстве.
- •17. Определение оператора. Понятие линейного оператора. Образ и прообраз векторов.
- •18. Матрица линейного оператора в заданном базисе: связь между вектором х и образом у. Ранг оператора. Операции над линейными операторами. Нулевой и тождественный операторы.
- •19. Собственные векторы и собственные значения оператора (матрицы а). Характеристический многочлен оператора и его характеристическое уравнение.
- •20. Матрица линейного оператора в базисе, состоящем из его собственных значений. Пример.
- •21. Квадратичная форма (определение). Матрица квадратичной формы. Ранг квадратичной формы. Пример.
- •22. Квадратичная форма (канонический вид). Приведение квадратичной формы к каноническому виду. Пример. Закон инерции квадратичных форм.
- •23. Положительно и отрицательно определенная, знакоопределенная квадратичные формы. Критерии знакоопределенности квадратичной формы (через собственные значения ее матрицы и по критерию Сильвестра).
- •24. Уравнение линии на плоскости. Точка пересечения двух линий. Основные виды уравнений прямой на плоскости (одно из них вывести).
- •25. Общее уравнение прямой на плоскости, его исследование. Условия параллельности и перпендикулярности прямых.
- •26. Кривые второго порядка, их общее уравнение. Нормальное уравнение окружности. Каноническое уравнение эллипса. Геометрический смысл параметров окружности и эллипса.
- •27. Канонические уравнения гиперболы и параболы. Геометрический смысл их параметров. Уравнение асимптот гиперболы. График обратно-пропорциональной зависимости и квадратного трехчлена.
- •28. Общее уравнение плоскости в пространстве и его частные случаи. Нормальный вектор плоскости. Условия параллельности и перпендикулярности двух плоскостей.
- •30. Углы между двумя плоскостями, двумя прямыми, между прямой и плоскостью. Условия их параллельности и перпендикулярности.
9. Базисные (основные) и свободные (неосновные) переменные системы m линейных уравнений с n переменными. Базисное решение.
Неизвестные, соответствующие столбцам, на которых расположены начала ступенек, называются базисными. Вернёмся от расширенной матрицы к системе уравнений. Свободные неизвестные обозначаются произвольными буквами. Это означает, что им позволено принимать любые значения. Получим систему относительно базисных неизвестных.
Решение, в котором все свободные неизвестные равны нулю, называют базисным.
10. Система линейных однородных уравнений и ее решения. Условие существования ненулевых решений такой системы.
Линейное уравнение называется однородным, если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений называется однородной и имеет общий вид:
Очевидно, что всякая однородная система совместна и имеет нулевое (тривиальное) решение. Поэтому применительно к однородным системам линейных уравнений часто приходится искать ответ на вопрос о существовании ненулевых решений. Ответ на этот вопрос можно сформулировать в виде следующей теоремы.
Теорема. Однородная система линейных уравнений имеет ненулевое решение тогда и только тогда, когда ее ранг меньше числа неизвестных.
Доказательство:
Допустим, система, ранг которой равен,
имеет ненулевое решение. Очевидно,
что
не
превосходит
.
В случае
система
имеет единственное решение. Поскольку
система однородных линейных уравнений
всегда имеет нулевое решение, то именно
нулевое решение и будет этим единственным
решением. Таким образом, ненулевые
решения возможны только при
.
Следствие 1: Однородная система уравнений, в которой число уравнений меньше числа неизвестных, всегда имеет ненулевое решение
Доказательство:
Если у системы уравнений
,
то ранг
системы
не превышает числа уравнений
,
т.е.
.
Таким образом, выполняется условие
и,
значит, система имеет ненулевое решение.
Следствие 2: Однородная система уравнений с неизвестными имеет ненулевое решение тогда и только тогда, когда ее определитель равен нулю.
Доказательство:
Допустим, система
линейных
однородных уравнений, матрица которой
с
определителем
,
имеет ненулевое решение. Тогда по
доказанной теореме
,
а это значит, что матрица
вырожденная,
т.е.
.
11. Векторы на плоскости и в пространстве (геометрические векторы). Линейные операции над векторами (сложение, умножение вектора на число). Коллинеарные и компланарные векторы.
Определение 1.Вектором называется направленный отрезок AB с начальной точкой A и конечной точкой B (который можно перемещать параллельно самому себе).
Определение 2.Длиной вектора AB называется число çABç, равное длине отрезка AB, изображающего вектор.
Определение 3.Произведением вектора a на число l называется вектор b=l×a, имеющий длину çbç=l×çaç, направление которого совпадает с направлением вектора a, если l>0, и противоположно ему, если l<0.
Определение 4.Суммой двух векторов a и b называется вектор c=a+b, начало которого совпадает с началом вектора a, а конец - с концом вектора b при условии, что начало вектора b совпадает с концом вектора a. Вектор c в этом случае представляет собой диагональ параллелограмма, построенного на векторах a и b (правило параллелограмма).
Разностью двух векторов a и b называется сумма вектора a и вектора (-1)×b.
Определение 5. Векторы, лежащие на одной прямой (или на параллельных прямых) называются коллинеарными, векторы, лежащие в одной плоскости, называются компланарными.
Определение 6.Координатами вектора a называются координаты его конечной точки, если так переместить вектор параллельно самому себе, чтобы его начало совпало с началом координат.
На плоскости Oxy вектор имеет две координаты: a(x1, y1) и b(x2, y2).
В пространстве Oxyz вектор имеет три координаты: a(x1, y1, z1) и b(x2, y2, z2).
Линейные операции в координатной форме:
1) произведение вектора a=(x, y, z) на число l, есть вектор b=(l x, l y, l z);
2) суммой и разностью векторов a(x1, y1, z1) и b(x2, y2, z2) являются соответственно векторы c=a+b=(x1+x2, y1+y2, z1+z2) и d=a-b=(x1-x2, y1-y2, z1-z2);
Длина
вектора a(x, y, z)
вычисляется по формуле çaç
=
.