
- •Вопросы для самопроверки
- •Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.
- •2. Определители 2, 3 и n-го порядков (определения и их свойства). Теорема Лапласа о разложении определителя по элементам строки или столбца.
- •3. Квадратная матрица и ее определитель. Особенная и неособенная квадратные матрицы. Присоединенная матрица. Матрица, обратная данной, и алгоритм ее вычисления.
- •4. Понятие минора k-го порядка. Ранг матрицы (определение). Вычисление ранга матрицы с помощью элементарных преобразований. Пример.
- •5. Линейная независимость строк (столбцов) матрицы. Теорема о ранге матрицы.
- •7. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.
- •8. Система m линейных уравнений с n переменными. Теорема Кронекера – Капелли. Условие определенности и неопределенности любой системы линейных уравнений.
- •9. Базисные (основные) и свободные (неосновные) переменные системы m линейных уравнений с n переменными. Базисное решение.
- •10. Система линейных однородных уравнений и ее решения. Условие существования ненулевых решений такой системы.
- •11. Векторы на плоскости и в пространстве (геометрические векторы). Линейные операции над векторами (сложение, умножение вектора на число). Коллинеарные и компланарные векторы.
- •12. Скалярное произведение двух векторов (определение) и его выражение в координатной форме. Угол между векторами.
- •14. Векторное (линейное) пространство. Его размерность и базис. Теорема о существовании и единственности разложения вектора линейного пространства по векторам базиса.
- •15. Скалярное произведение векторов в n-мерном пространстве. Евклидово пространство. Длина (норма) вектора.
- •16. Ортогональные векторы. Ортогональный и ортонормированный базисы. Теорема о существовании ортонормированного базиса в евклидовом пространстве.
- •17. Определение оператора. Понятие линейного оператора. Образ и прообраз векторов.
- •18. Матрица линейного оператора в заданном базисе: связь между вектором х и образом у. Ранг оператора. Операции над линейными операторами. Нулевой и тождественный операторы.
- •19. Собственные векторы и собственные значения оператора (матрицы а). Характеристический многочлен оператора и его характеристическое уравнение.
- •20. Матрица линейного оператора в базисе, состоящем из его собственных значений. Пример.
- •21. Квадратичная форма (определение). Матрица квадратичной формы. Ранг квадратичной формы. Пример.
- •22. Квадратичная форма (канонический вид). Приведение квадратичной формы к каноническому виду. Пример. Закон инерции квадратичных форм.
- •23. Положительно и отрицательно определенная, знакоопределенная квадратичные формы. Критерии знакоопределенности квадратичной формы (через собственные значения ее матрицы и по критерию Сильвестра).
- •24. Уравнение линии на плоскости. Точка пересечения двух линий. Основные виды уравнений прямой на плоскости (одно из них вывести).
- •25. Общее уравнение прямой на плоскости, его исследование. Условия параллельности и перпендикулярности прямых.
- •26. Кривые второго порядка, их общее уравнение. Нормальное уравнение окружности. Каноническое уравнение эллипса. Геометрический смысл параметров окружности и эллипса.
- •27. Канонические уравнения гиперболы и параболы. Геометрический смысл их параметров. Уравнение асимптот гиперболы. График обратно-пропорциональной зависимости и квадратного трехчлена.
- •28. Общее уравнение плоскости в пространстве и его частные случаи. Нормальный вектор плоскости. Условия параллельности и перпендикулярности двух плоскостей.
- •30. Углы между двумя плоскостями, двумя прямыми, между прямой и плоскостью. Условия их параллельности и перпендикулярности.
Вопросы для самопроверки
Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.
Матрицей размера m×n наз прямоугольная таблица сост из m-строк и n-столбцов.
⌠а11а12а13……а1n ⌠
А= |a21a22a33……a2n |=(aij)m×n=[aij]m×n.
|……………… |
⌡am1am2am3…amn⌡
aij-элементы матрицы. i-номер строки j-номер столбца
б)Матрица сост из одной строки наз матрицей строкой(вектором строкой):В=(b11b12…b1n).
Матрица сост из одного столбца назматрицей-столбцом(вектором-столбцом).
[c11]
C=| c21 |
| … |
[cm1]
Если кол-во строк = кол-ву столбцов, то матрица наз квадратной размера m×n (матрица порядка m). Диагональная матрица-матрица все элементы кот, кроме диагональных =0.
Элементы матрицы у кот номер столбца = номеру строки наз диагональными и образуют главную диагональ матрицы. Если у диагональной матрицы все диагональные элементы =1, то она наз единичной. (Е=(…)). Матрица любого размера называется нулевойесли все ее элементы равны 0.
в)Транспонирование матрицы- переход от матрицы А к матрице А/, в кот строки и столбцы поменялись местами с сохранением порядка. Матрица А/ наз транспонированнойотносительно матрицы А. Св-ва: 1) (А/)/=А, 2) (λА/)/=λА/, 3) (А+В)/=А/+В/.4) (АВ)/=А/В/.
г)Две матрицы А и В одного размера назравными,если они совпадают поэлементно, т е aij=bij для любых i=1,2,…m; j= 1,2,…,n.
д)1. Умножение матрицы на число.Произведением матрицы А на число λ наз матрица В=λА, элементы кот bij=λaij для i=1,2,…,m; j=1,2,…,n. Общий множитель всех элементов матрицы можно выносить за знак матрицы. Произведение матрицы А на число 0, равно нулевой матрице. (0А=0).
2. сложение матриц. Суммой двух матриц А и В одинакового размера m×n наз матрица С=А+В, элементы кот cij=aij+bij для i=1,2,…,m; j=1,2,…,n. ( т е матрицы складываются поэлементно). В частности А+0=А.
3. Вычетание матриц. Разность двух матриц одинакового размера опред ч/з предыдущие операции А-В= А+(-1)В.
4. Умножение матриц. Умножение матрицы А на матрицу В определено, если число столбцов матрицы А равно числу строк матрицы В. Произведением матрицы А размера m×k на матрицу В размера k×n наз матрица С размера m×n, каждый элемент кот = сумме произведений элементов i-строки матрицы А на соответствующие элементы j-столбца матрицы В. cij=ai1b1j+ai2b2j+…+aikbik.
2. Определители 2, 3 и n-го порядков (определения и их свойства). Теорема Лапласа о разложении определителя по элементам строки или столбца.
Определителем матрицы 2-го порядка наз число, кот вычисляется по формуле:
∆2=|А|=|а11а12|=а11а22-а12а21.-члены определителя.
|а21а22 |
Определителем матрицы 3-го порядка кот вычисляется по формуле: ∆3=|А|=а11а22а33+а12а23а32+а21а32а13-а31а22а13-а12а21а33-а32а23а11.
Определителем квадратной матрицы n-го порядка наз число =алгебраической сумме п! членов, каждый из кот явл произведением п элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем знак каждого члена определяется как (-1)r(J)где r(J)-число инверсий в перестановке J из номеров столбцов элементов матрицы, если при этом номера строк записаны в порядке возрастания: ∆=|А|=∑(J)(-1)r(J)a1j1a2j2…anjn.
C-ва:1) если какая-либо строка (столбец) матрицы сост из одних нулей, то ее определитель=0. 2) если все элементы какой-либо строки (столбца) матрицы умножить на число λ, то ее определитель умножится на это число. 3) При транспонировании матрицы ее определитель не изменяется |A/|=|A|. 4) при перестановке двух строк (столбцов) матрицы ее определитель меняет знак на противоположный. 5) если квадратная матрица содержит две одинаковые строки(столбца), то ее определитель=0. 6) если элементы двух строк (столбцов) матрицы пропорциональны, то ее определитель равен 0. 7) сумма произведений элементов какой-либо строки(столбца) матрицы на алгебраичские дополнения элементов др строки (столбца) этой матрицы равна 0. 8) определитель матрицы не изменится, если к элементам какой-либо строки(столбца) матрицы прибавить элементы др строки(столбца), предварительно умноженные на одно и тоже число. 9) Сумма произведений произвольных чисел на алгебраические дополнения элементов любой строки(столбца) = определителю матрицы, полученной из данной заменой элементов этой строки(столбца) на числа b1,b2,…,bn. 10) определитель произведения двух квадратных матриц= произведению их определителей.
б)Определитель п-го порядка = сумме произведения элементов какой-либо строки или столбца на их алгебраические дополнения. ∆=аi1Ai1+ai2Ai2+…+ainAin. –разложение по строке. ∆=aijA1j+a2jA2j+…+anjAnj- разложение по столбцу.