- •Физика и химия высокомолекулярных соединений
- •Модуль 1. Основные понятия химии полимера их классификация и синтез методами радикальной и катионной полимеризации.
- •1.1. Основные понятия химии высокомолекулярных соединений
- •Основные понятия и определения.
- •Основные отличия высокомолекулярных соединений от низкомолекулярных соединений.
- •Основные понятия и определения.
- •1.1.2. Основные отличия высокомолекулярных соединений от низкомолекулярных соединений.
- •1.2. Классификация полимеров. Понятие конфигурации, конформации и гибкости полимеров.
- •1.2.3.Классификация полимеров в зависимости от формы макромолекулы.
- •1.2.4.Классификация полимеров в зависимости от природы расположения звеньев макромолекулы.
- •1.2.5. Классификация полимеров в зависимости от поведения при повышенных температурах.
- •1.2.6. Стереорегулярные полимеры.
- •1.2.7. Конфигурация полимеров.
- •1.2.8. Конформация полимеров.
- •1.2.9. Гибкость полимеров.
- •Понятие средней молекулярной массы полимеров.
- •Кривые молекулярно – массового распределения.
- •1.3.3. Среднечисловая молекулярная масса.
- •1.3.4. Среднемассовая молекулярная масса.
- •1.3.5. Средневязкостная молекулярная масса.
- •1.3.6. Понятие функциональности.
- •1.4. Методы синтеза полимеров. Радикальная полимеризация.
- •1.4.2. Мономеры, вступающие в радикальную полимеризацию.
- •1.4.3. Стадии радикальной полимеризации. Инициирование (термическое, окислительно-восстановительное, фотохимическое).
- •1.4.4. Рост цепи.
- •1.4.5. Обрыв цепи.
- •1.4.6. Передача цепи.
- •1.4.7. Регуляторы молекулярной массы полимера.
- •1.4.8. Ингибиторы реакции полимеризации.
- •1.5. Кинетика радикальной полимеризации. Влияние различных факторов на процесс радикальной полимеризации.
- •1.5.1. Кинетика радикальной полимеризации.
- •1.5.1. Кинетика радикальной полимеризации.
- •1.5.2. Влияние температуры на процесс радикальной полимеризации.
- •1.6. Радикальная сополимеризация. Способы проведения радикальной сополимеризации.
- •1.6.2. Кинетика радикальной сополимеризации.
- •1.6.3. Диаграмма состава сополимера от исходной смеси мономеров.
- •1.6.4. Определение констант сополимеризации методом Майо – Льюиса.
- •1.6.5. Определение констант сополимеризации методом Файмана - Росса.
- •1.6.6. Способы проведения полимеризации в блоке.
- •1.6.7. Способы проведения полимеризации в растворе.
- •1.6.8. Способы проведения полимеризации в эмульсии.
- •1.6.9. Способы проведения полимеризации в суспензии.
- •1.7. Катионная полимеризация.
- •1.7.2. Стадии катионной полимеризации (инициирование, рост цепи, передача цепи на мономер).
- •1.7.3. Кинетика катионной полимеризации.
- •Модуль 2. Синтез полимеров методом анионной полимеризации. Химическое превращение полимеров. Кристаллические и аморфные полимеры. Растворы полимеров. Отдельные представители.
- •2.1. Анионная полимеризация.
- •2.1.2. Стадии анионной полимеризации (инициирование, рост цепи, передача цепи на растворитель и на мономер).
- •2.1.3. Особенности анионной полимеризации. Скорость анионной полимеризации.
- •2.1.4. Анионная полимеризация в присутствии щелочных металлов, а также алкилов щелочных металлов.
- •2.1.5. Анионно-координационная полимеризация.
- •2.1.6. Ионно-координационная полимеризация.
- •2.2. Поликонденсация.
- •2.2.1. Мономеры, вступающие в реакцию поликонденсации.
- •2.2.2. Классификация поликонденсации (гомополиконденсация, гетерополиконденсация, линейная, трехмерная, циклополиконденсация, равновесная и неравновесная поликонденсации).
- •2.2.3. Основные отличия поликонденсации от полимеризации.
- •2.2.1. Мономеры, вступающие в реакцию поликонденсации.
- •2.2.2. Классификация поликонденсации (гомополиконденсация, гетерополиконденсация, линейная, трехмерная, циклополиконденсация, равновесная и неравновесная поликонденсации).
- •Основные отличия поликонденсации от полимеризации.
- •2.3. Влияние различных факторов на процесс поликонденсации.
- •2.3.2. Побочные реакции.
- •2.3.3. Кинетика линейной поликонденсации.
- •2.3.4. Способы проведения линейной поликонденсации.
- •2.5. Деструкция полимеров.
- •2.5.1. Химическая деструкция.
- •2.5.2. Окислительная деструкция.
- •2.5.3. Термическая деструкция.
- •2.5.4. Фотохимическая деструкция.
- •2.5.5. Действие ионизирующих излучений.
- •2.5.6. Механохимические процессы.
- •2.6. Структура макромолекул и физическое состояние аморфных полимеров.
- •2.6.2. Надмолекулярные структуры.
- •2.6.3. Три физических состояния аморфных полимеров.
- •2.6.4. Стеклообразное состояние.
- •2.6.5. Высокоэластическое состояние.
- •2.6.5. Вязкотекучее состояние.
- •2.6.6.Релаксация напряжения.
- •2.7. Растворы полимеров.
- •2.7.2. Признаки растворов.
- •2.7.3. Особенности процесса растворения полимеров.
- •2.7.4. Термодинамика растворения полимеров.
- •2.7.5. Факторы, влияющие на растворение и набухание полимеров.
- •2.7.6. Уравнение состояния полимера в растворе.
- •2.7.7. Гидродинамические свойства макромолекул в разбавленных растворах.
- •2.7.8. Фракционирование полимеров.
- •2.8. Основные представители полимеров.
- •2.8.2. Галогенпроизводные представители углеводородов.
- •2.8.3. Ароматические углеводороды.
- •2.8.4. Сложные полиэфиры. Полиэтилентерефталат (лавсан).
- •2.8.5. Синтетические полиамиды.
- •2.8.6. Полиуретаны.
1.2.3.Классификация полимеров в зависимости от формы макромолекулы.
. ВМС классифицируются в зависимости от формы макромолекулы на:
а) линейные полимеры. Например, натуральный каучук и целлюлоза. В случае гибких полимеров, линейные полимеры могут свертываться в клубок. К ним относятся большое число синтетических полимеров, которые хорошо растворяются и применяются для изготовления пластмасс и химических волокон.
б) разветвленные полимеры имеют боковые ответвления, присоединенные к основной цепи. Они лучше растворяются, чем линейные полимеры, имеют меньшую температуру плавления, применяются для изготовления лаков, пленок и клея.
в) сетчатые полимеры, или пространственные полимеры построены из макромолекулярных цепей, соединенных между собой поперечными связями. Их можно рассматривать как сшитые линейные полимеры. Например, алмаз, кварц, графит, фенолоформальдегидные и глифталевые смолы. Сшитые полимеры не плавятся, не растворяются, характеризуются жесткостью и хрупкостью. Для сетчатых полимеров понятие молекулярная масса становится неопределенным, т.к. трудно определить границу макромолекулы.
1.2.4.Классификация полимеров в зависимости от природы расположения звеньев макромолекулы.
Полимеры подразделяются в зависимости от природы расположения звеньев макромолекулы:
а) гомополимеры – полимеры, состоящие, из одинаковых звеньев и синтезированные из одного мономера (например,полиэтилен).
– Α – Α – Α – А– Α–
б) сополимеры – полимеры, состоящие из звеньев нескольких мономеров (например,бутадиен, стирольный каучук).
– Α – Β – Α –Β – Α –
в) блок-сополимеры – полимеры, в которых различные звенья собраны в длинные участки и чередуются между собой.
– (A)m – (B)n – (A)x – (B)y–
1.2.5. Классификация полимеров в зависимости от поведения при повышенных температурах.
В зависимости от поведения при повышенных температурах полимеры делятся на:
а) термопластичные. Термопластами называют такие полимеры, которые при нагревании переходят в вязкотекучее состояние, а при охлаждении переходят в твердое, стеклообразное состояние без изменения первоначальных свойств.
б) термореактивные полимеры, которые при нагревании образуют сетчатые структуры и превращаются в твердые, неплавкие, нерастворимые полимеры (фенолоформальдегидные и глифталевые смолы).
1.2.6. Стереорегулярные полимеры.
Стереорегулярными полимерами называются полимеры, в макромолекуле которых имеется ассиметричный атом углерода.
n
CH2=
СН→ - CH2
– C
Н
– CH2–
C
Н-
׀ ׀ ׀
R R R
C - третичный атом углерода ассиметричный, т.к. помимо атома водорода и радикала каждый из них связан с участками молекулярной цепи различной длины. В связи с этим появляется оптическая изомерия.
Полимеры, в которых заместители расположены по одну сторону плоскости, называют изотактическими.
Когда по разные стороны плоскости называют синдиотактические.
Когда заместители расположены в беспорядке, называют атактическими.
