- •Физика и химия высокомолекулярных соединений
- •Модуль 1. Основные понятия химии полимера их классификация и синтез методами радикальной и катионной полимеризации.
- •1.1. Основные понятия химии высокомолекулярных соединений
- •Основные понятия и определения.
- •Основные отличия высокомолекулярных соединений от низкомолекулярных соединений.
- •Основные понятия и определения.
- •1.1.2. Основные отличия высокомолекулярных соединений от низкомолекулярных соединений.
- •1.2. Классификация полимеров. Понятие конфигурации, конформации и гибкости полимеров.
- •1.2.3.Классификация полимеров в зависимости от формы макромолекулы.
- •1.2.4.Классификация полимеров в зависимости от природы расположения звеньев макромолекулы.
- •1.2.5. Классификация полимеров в зависимости от поведения при повышенных температурах.
- •1.2.6. Стереорегулярные полимеры.
- •1.2.7. Конфигурация полимеров.
- •1.2.8. Конформация полимеров.
- •1.2.9. Гибкость полимеров.
- •Понятие средней молекулярной массы полимеров.
- •Кривые молекулярно – массового распределения.
- •1.3.3. Среднечисловая молекулярная масса.
- •1.3.4. Среднемассовая молекулярная масса.
- •1.3.5. Средневязкостная молекулярная масса.
- •1.3.6. Понятие функциональности.
- •1.4. Методы синтеза полимеров. Радикальная полимеризация.
- •1.4.2. Мономеры, вступающие в радикальную полимеризацию.
- •1.4.3. Стадии радикальной полимеризации. Инициирование (термическое, окислительно-восстановительное, фотохимическое).
- •1.4.4. Рост цепи.
- •1.4.5. Обрыв цепи.
- •1.4.6. Передача цепи.
- •1.4.7. Регуляторы молекулярной массы полимера.
- •1.4.8. Ингибиторы реакции полимеризации.
- •1.5. Кинетика радикальной полимеризации. Влияние различных факторов на процесс радикальной полимеризации.
- •1.5.1. Кинетика радикальной полимеризации.
- •1.5.1. Кинетика радикальной полимеризации.
- •1.5.2. Влияние температуры на процесс радикальной полимеризации.
- •1.6. Радикальная сополимеризация. Способы проведения радикальной сополимеризации.
- •1.6.2. Кинетика радикальной сополимеризации.
- •1.6.3. Диаграмма состава сополимера от исходной смеси мономеров.
- •1.6.4. Определение констант сополимеризации методом Майо – Льюиса.
- •1.6.5. Определение констант сополимеризации методом Файмана - Росса.
- •1.6.6. Способы проведения полимеризации в блоке.
- •1.6.7. Способы проведения полимеризации в растворе.
- •1.6.8. Способы проведения полимеризации в эмульсии.
- •1.6.9. Способы проведения полимеризации в суспензии.
- •1.7. Катионная полимеризация.
- •1.7.2. Стадии катионной полимеризации (инициирование, рост цепи, передача цепи на мономер).
- •1.7.3. Кинетика катионной полимеризации.
- •Модуль 2. Синтез полимеров методом анионной полимеризации. Химическое превращение полимеров. Кристаллические и аморфные полимеры. Растворы полимеров. Отдельные представители.
- •2.1. Анионная полимеризация.
- •2.1.2. Стадии анионной полимеризации (инициирование, рост цепи, передача цепи на растворитель и на мономер).
- •2.1.3. Особенности анионной полимеризации. Скорость анионной полимеризации.
- •2.1.4. Анионная полимеризация в присутствии щелочных металлов, а также алкилов щелочных металлов.
- •2.1.5. Анионно-координационная полимеризация.
- •2.1.6. Ионно-координационная полимеризация.
- •2.2. Поликонденсация.
- •2.2.1. Мономеры, вступающие в реакцию поликонденсации.
- •2.2.2. Классификация поликонденсации (гомополиконденсация, гетерополиконденсация, линейная, трехмерная, циклополиконденсация, равновесная и неравновесная поликонденсации).
- •2.2.3. Основные отличия поликонденсации от полимеризации.
- •2.2.1. Мономеры, вступающие в реакцию поликонденсации.
- •2.2.2. Классификация поликонденсации (гомополиконденсация, гетерополиконденсация, линейная, трехмерная, циклополиконденсация, равновесная и неравновесная поликонденсации).
- •Основные отличия поликонденсации от полимеризации.
- •2.3. Влияние различных факторов на процесс поликонденсации.
- •2.3.2. Побочные реакции.
- •2.3.3. Кинетика линейной поликонденсации.
- •2.3.4. Способы проведения линейной поликонденсации.
- •2.5. Деструкция полимеров.
- •2.5.1. Химическая деструкция.
- •2.5.2. Окислительная деструкция.
- •2.5.3. Термическая деструкция.
- •2.5.4. Фотохимическая деструкция.
- •2.5.5. Действие ионизирующих излучений.
- •2.5.6. Механохимические процессы.
- •2.6. Структура макромолекул и физическое состояние аморфных полимеров.
- •2.6.2. Надмолекулярные структуры.
- •2.6.3. Три физических состояния аморфных полимеров.
- •2.6.4. Стеклообразное состояние.
- •2.6.5. Высокоэластическое состояние.
- •2.6.5. Вязкотекучее состояние.
- •2.6.6.Релаксация напряжения.
- •2.7. Растворы полимеров.
- •2.7.2. Признаки растворов.
- •2.7.3. Особенности процесса растворения полимеров.
- •2.7.4. Термодинамика растворения полимеров.
- •2.7.5. Факторы, влияющие на растворение и набухание полимеров.
- •2.7.6. Уравнение состояния полимера в растворе.
- •2.7.7. Гидродинамические свойства макромолекул в разбавленных растворах.
- •2.7.8. Фракционирование полимеров.
- •2.8. Основные представители полимеров.
- •2.8.2. Галогенпроизводные представители углеводородов.
- •2.8.3. Ароматические углеводороды.
- •2.8.4. Сложные полиэфиры. Полиэтилентерефталат (лавсан).
- •2.8.5. Синтетические полиамиды.
- •2.8.6. Полиуретаны.
2.6.4. Стеклообразное состояние.
При низкой температуре деформация мала. Она мало увеличивается с температурой. Аморфный полимер ведет себя при низких температурах как стекло. Мы говорим, что полимер находится в стеклообразном состоянии.
Начиная с некоторой температуры, называемой температурой стеклования Тс, деформация начинает увеличиваться и, наконец, достигает несколько десятков, а при снятии кривой в режиме растяжения – и сотен процентов. При дальнейшем нагревании деформация снова мало зависит от температуры, что на кривой выражается наличием протяженного плато. Промежуточная область между температурой стеклования и температурой выхода на плато носит название переходной области. Полимер при этом деформируется «вяло»: он перестал быть жестким стеклообразным телом и не стал еще эластичным, как хорошая резина. Его механическое поведение напоминает поведение при изгибе полоски натуральной кожи или линолеума, которые, будучи изогнутыми, медленно возвращается в исходное положение.
2.6.5. Высокоэластическое состояние.
При температуре выхода на плато полимер переходит в развитое высокоэластическое состояние. Он легко деформируется при действии силы и быстро возвращается в исходное положение после снятие груза. Такая деформация непременно связана с изменением формы макромолекулярных статистических клубков и поэтому называется высокоэластической деформацией, а полимер во всем интервале температур, ограниченном плато на термомеханической кривой, находится в высокоэластическом состоянии.
2.6.5. Вязкотекучее состояние.
Высокоэластическая деформация, величина, которая определятся изменением формы макромолекулярных клубков, мало зависит от температуры. По этой причине рост деформации под действием той же силы и за тот же промежуток времени, как определено выше, может быть обусловлен только развитием нового типа деформации – деформации вязкого течения. Температура, при которой в полимере обнаруживается заметная деформация вязкого течения, приводящего к появлению изгиба на термомеханической кривой, называется температурой текучести. Выше температуры текучести полимер находится в вязкотекучем состоянии.
Влияние молекулярной массы полимера на температуру текучести. На рисунке показано изменение формы термомеханической кривой для полимергомологов с увеличением их молекулярной массы (М1<M2 <M3<M4< M5).
Низкомолекулярные полимергомологи аморфных полимеров могут находиться в двух физических состояниях: стеклообразном и жидком. Их температура стеклования и текучести совпадают.
С повышением молекулярной массы появляется область высокоэластического состояния, которая с повышением молекулярной массы увеличивается. При этом температура стеклования Тс остается постоянной, а температура текучести Тт повышается.
Гибкие высокомолекулярные полимеры характеризуются низкомолекулярными значениями Тс и высокими Тт, т.е широким температурным интервалом эластичности (от -70 оC до 200 оC). Жесткие высокомолекулярные соединения имеют высокую Тс и небольшой интервал эластичности (от 100 оC до 160 оC).
С увеличением полярности полимера Тт увеличивается.
Вязкотекучее состояние важно при переработке полимера. Чем ниже Тт, тем легче перерабатывать полимер, потому что температура переработки оказывается в области сильно развитой текучести. Если Тт<Тпл, после плавления полимер сразу переходит в вязкотекучее состояние; Тт> Тпл> Тс, после плавления полимер переходит в высокоэластическое состояние
