Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Текст лекций.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
4.29 Mб
Скачать

4.2. Моделирование движения сложных сред

Представим себе, что жидкость разделена на бесконечно тонкие горизонтальные плоские слои (рис.4.2), которые при перемещении верхней пластины скользят один по другому так же, как карты в сдвигаемой колоде. Если скорость бесконечно мала, то эта деформация не требует сколько-нибудь заметного усилия, хотя величина смещения U может расти безгранично.

Только тогда, когда скорость будет конечна, возникает сила сопротивления, вызванная трением слоев жидкости относительно друг друга. Отсюда ясно, что мерой сдвиговых деформаций жидкости является не величина , а аналогичное ей отношение , называемое

Рис.4.2. Течение вязкой жидкости

скоростью сдвига (Н  расстояние между пластинами).

Поскольку , то скорость сдвига часто обозначается символом (напомним, что в механике точка соответствует дифференцированию по времени). Силы, необходимые для сдвига жидкости, по-прежнему определяются касательным напряжением , где F  сила сопротивления, возникающая на площади S из-за затрудненного проскальзывания соседних слоев жидкости. Предполагая, что касательное напряжение пропорционально скорости сдвига (Ньютон, 1687 г.), получим , где величина называется вязкостью жидкости.

Материалы, описываемые этим уравнением, называются ньютоновскими жидкостями. Реальные значения вязкости изменяются в очень широких пределах. Так, при 20°С вода имеет вязкость 110-3 Пас, а глицерин  1,5 Пас.

На рис.4.3 приведены реологические кривые зависимости касательного напряжения от меры сдвига  для трех рассмотренных выше материалов. Такие диаграммы могли бы быть получены в ходе экспериментов с идеальными телами при постепенном увеличении напряжения (нагрузке) и обратном его уменьшении (разгрузке). Стрелки на приведенных диаграммах указывают направление, в котором изменяется напряжение.

Реологическая диаграмма пластического тела имеет 1 упругий участок вплоть до предела текучести. При снятии напряжений, эта часть полной деформации обратима, а те деформации, что были накоплены в процессе течения, являются необратимыми (рис. 4.3, б).

Рис. 4.3. Реологические кривые.

Хорошо всем знакомым примером такого тела является зубная паста. Если слегка сдавить тюбик с зубной пастой, то плоская поверхность пасты в выходном отверстии становится выпуклой, но при снятии давления эта выпуклость исчезает. Если же тюбик сжимается с большей силой, то происходит необратимое выдавливание цилиндрика пасты. Присмотревшись, можно заметить, что на конце этого цилиндрика образуется сферический сегмент, пропадающий после снятия нагрузки за счет исчезновения обратимых нагрузок.

4.2.2. Неньютоновские жидкости.

Гипотеза Ньютона о линейной связи между тангенциальным напряжением и скоростью сдвига оказалась очень удобным приближением, справедливым для абсолютного большинства низкомолекулярных жидкостей, но при рассмотрении реологических свойств жидкостей, склонных к структурообразованию (суспензий, эмульсий, растворов полимеров, красок, «тяжёлых нефтей», глинистых растворов и т.д.), были обнаружены многочисленные отклонения от закона Ньютона. Такие жидкости называются неньютоновскими, и для них реологическая кривая (или, как часто говорят, кривая течения) не является линейной, т.е. вязкость не остаётся постоянной, а зависит от скорости сдвига или от предыстории деформации материала.

Типичным примером неньютоновских жидкостей являются полимерные системы, в которых длинные гибкие молекулы, зацепляясь друг за друга, образуют некую пространственную структуру («сетку»), резко повышающую вязкость. Под действием сдвиговых деформаций часть структурных связей разрушается, что приводит к уменьшению вязкости.

Отметим тот факт, что Пуазейль был по профессии медиком и интересовался прохождением крови через малые кровеносные сосуды. Сейчас известно, что кровь не является ньютоновской жидкостью, поэтому автор опыта, экспериментально подтвердившего на примере воды предположения Ньютона, в каком-то смысле является первым исследователем неньютоновских сред.